

Final Report

Chesapeake Bay Water Quality Monitoring Program

Long-term Benthic Monitoring and Assessment Component Level 1 Comprehensive Report

July 1984 – December 2015 (Volume 1)

Prepared for

Maryland Department of Natural Resources Resource Assessment Service Tidewater Ecosystem Assessments Annapolis, Maryland

Prepared by

Roberto J. Llansó Danielle Zeveta Lisa C. Scott

Versar, Inc. 9200 Rumsey Road, Suite 100 Columbia, MD 21045

January 2017

CHESAPEAKE BAY WATER QUALITY MONITORING PROGRAM

LONG-TERM BENTHIC MONITORING AND ASSESSMENT COMPONENT LEVEL I COMPREHENSIVE REPORT

JULY 1984 - DECEMBER 2015 (VOLUME 1)

Prepared for

Maryland Department of Natural Resources Resource Assessment Service Tidewater Ecosystem Assessments Annapolis, Maryland

Prepared by

Roberto J. Llansó Danielle Zaveta Lisa C. Scott

Versar, Inc. 9200 Rumsey Road Columbia, Maryland 21045

> Final Report January 2017

FOREWORD

This document, Chesapeake Bay Water Quality Monitoring Program: Long-Term Benthic Monitoring and Assessment Component, Level I Comprehensive Report (July 1984-December 2015), was prepared by Versar, Inc., at the request of Mr. Tom Parham of the Maryland Department of Natural Resources under Contract # RAT5/10-297 between Versar, Inc., and Maryland DNR. The report assesses the status of Chesapeake Bay benthic communities in 2015 and evaluates their responses to changes in water quality.

Foreword

ACKNOWLEDGEMENTS

We are grateful to the State of Maryland's Environmental Trust Fund which partially funded this work. The benthic studies discussed in this report were conducted from the University of Maryland's (R/V *Rachel Carson*) and Maryland DNR (R/V *Kerhin*) research vessels and we appreciate the efforts of their captains and crew. We thank Nancy Mountford and Tim Morris of Cove Corporation who identified benthos in many of the historical samples and provided current taxonomic and autoecological information. We also thank those at Versar whose efforts helped produce this report: the field crew who collected samples, including Katherine Dillow, David Wong, and Colby Hause; the laboratory staff who processed the samples and provided taxonomic identifications, Lisa Scott, Suzanne Arcuri, Istvan Turcsanyi, and Michael Winnell; Allison Brindley for GIS support; Dr. Don Strebel for web-page development; and Sherian George for document production. Danielle Zaveta managed and analyzed the data.

We appreciate the efforts of Dr. Daniel M. Dauer, Mike Lane, and Anthony (Bud) Rodi of Old Dominion University who coordinate the activities of the Virginia Benthic Monitoring Program. Lastly, we thank Todd Beser who helped coordinate logistics for the sampling of the Aberdeen Proving Grounds.

EXECUTIVE SUMMARY

Benthic macroinvertebrates have been an important component of the State of Maryland's Chesapeake Bay water quality monitoring program since the program's inception in 1984. Benthos integrate temporally variable environmental conditions and the effects of multiple types of environmental stress. They are sensitive indicators of environmental status. Information on the condition of the benthic community provides a direct measure of the effectiveness of management actions. The Long-Term Benthic Monitoring and Assessment Program contributes information to the Chesapeake Bay Health and Restoration Reports, and to the water quality characterization and list of impaired waters under the Clean Water Act. This report is one in a series of Level-One Annual Reports that summarize data up to the current sampling year. Benthic community condition and trends in the Chesapeake Bay are assessed for 2015 and compared to results from previous years.

The highlights for 2015 can be summarized as follows:

- (1) The overall condition of Chesapeake Bay improved in 2015, with 62% of the Bay's tidal waters meeting the benthic community restoration goals (38% failing), up from 59% in 2014. The extent of both the degraded and the severely degraded condition was the lowest since baywide monitoring began in 1996.
- (2) The largest improvement occurred in the Maryland portion of the Chesapeake Bay, with 47% of its tidal waters meeting the benthic community restoration goals (53% failing) in 2015, up from 40% in 2014.
 - The Patuxent River and the Maryland mid-bay mainstem showed the largest improvements.
 - A statistically significant increasing trend in percent area degraded over the 1985-2014 time series disappeared with the addition of the 2015 data.
- (3) A majority of the historical fixed sites showed increases in abundance, number of species, biomass, and benthic index of biotic integrity (B-IBI) scores in 2015.
 - Benthic condition averaged over the last three years of monitoring improved at 10 sites, with 5 sites that were failing the B-IBI now meeting the goals.
- (4) Statistically significant B-IBI trends were detected at 12 of the 27 fixed sites.
 - 4 sites improved (significantly increasing B-IBI score): upper Bay mainstem (Station 26), mesohaline Choptank River (Station 64), Bear Creek (Station 201), and Back River (Station 203).

- 8 sites declined (significantly decreasing B-IBI score): Baltimore Harbor (Station 22), Curtis Creek (Station 202), Patuxent River at Holland Cliff (Station 77), Patuxent River at Broomes Island (Station 71), tidal fresh Potomac River (Station 36), mesohaline Potomac River at Morgantown (Stations 43 and 44), and Nanticoke River (Station 62).
- Changes in 2015 from 2014 results were the appearance of an improving B-IBI trend in Bear Creek (Station 201), and the disappearance of declining B-IBI trends in the mid-bay mainstem at Calvert Cliffs (Station 001) and the Potomac River at St. Clements Island (Station 52).

Benthic community degradation was exceptionally low in 2015, with improvements exhibited at most of the fixed sites and probability-based sampling strata. Better benthic community condition in 2015 followed improvements in 2014 and 2013. The observed improvements in benthic condition were associated with low hypoxic volumes. Hypoxic volume in Chesapeake Bay was below average in June, July, and late August 2015. In early June hypoxic volume was below 2 km³, compared to a long-term average of 4.3 km³. Low hypoxic volumes in 2015 were likely the result of overall low spring flows and nutrient runoff into Chesapeake Bay. Benthic condition varies from year to year depending on a variety of factors, among which nutrient loading, variability in spring river flow, physical forcing, and the timing of hypoxia play contributing and interacting roles.

Despite the improvements observed in recent years, overall benthic condition in Chesapeake Bay and the Maryland Bay remains in poor status. Over the 1985-2015 period, abundance, number of species, and the biomass of large species have declined in the Chesapeake Bay, and low rates of benthic production are observed in areas impacted by hypoxia. This background contrasts with recent reports of improving water quality, and suggests that the recovery of the benthic communities, on which many fisheries and avian species depend, may be tied to factors in which not only management plays a role, but increasingly important aspects of climate change interact with species populations to provide patterns of benthic community change that clearly mask the restoration efforts. The results of this year's monitoring, however, suggest that benthic communities are resilient to stress and can respond quickly to improvements in water quality.

TABLE OF CONTENTS

Page

VOLUME 1

ACKN	NORD
1.0	INTRODUCTION
	1.1 BACKGROUND
	1.2 OBJECTIVES OF THIS REPORT 1-3
	1.3 ORGANIZATION OF REPORT 1-4
2.0	METHODS
	2.1 SAMPLING DESIGN
	2.1.1 Fixed Site Sampling2-1
	2.1.2 Probability-based Sampling2-8
	2.2 SAMPLE COLLECTION
	2.2.1 Station Location
	2.2.2 Water Column Measurements2-11
	2.2.3 Benthic Samples 2-14
	2.3 LABORATORY PROCESSING
	2.4 DATA ANALYSIS
	2.4.1 The B-IBI and the Chesapeake Bay Benthic Community
	Restoration Goals 2-16
	2.4.2 Fixed Site Trend Analysis 2-16
	2.4.3 Probability-based Estimation2-17
	2.4.4 B-IBI Salinity Habitat Class Correction in 2011
3.0	RESULTS
	3.1 TRENDS IN FIXED SITE BENTHIC CONDITION
	3.2 BAYWIDE BOTTOM COMMUNITY CONDITION
	3.3 BASIN-LEVEL BOTTOM COMMUNITY CONDITION
4.0	DISCUSSION
5.0	REFERENCES

TABLE OF CONTENTS

VOLUME 1

Page

APPENDICES

A	FIXED SITE COMMUNITY ATTRIBUTE 1985-2015 TREND ANALYSIS RESULTS
В	FIXED SITE B-IBI VALUES, SUMMER 2015B-1
С	RANDOM SITE B-IBI VALUES, SUMMER 2015C-1

VOLUME 2

DATA SUMMARIES

А	BENTHIC ENVIRONMENT AND COMMUNITY COMPOSITION AT	
	FIXED SITES: SUMMER 2015A-	1
_		
В	BENTHIC ENVIRONMENT AND COMMUNITY COMPOSITION	
	AT THE MARYLAND BAY RANDOM SITES: SUMMER 2015B-	1

LIST OF TABLES

Table	Page
2-1.	Location, habitat type, sampling gear, and habitat criteria for fixed sites
2-2.	Allocation of probability-based baywide samples, 1994 2-8
2-3.	Allocation of probability-based baywide samples, in and after 1995 2-11
2-4.	Methods used to measure water quality parameters
2-5.	Taxa for which biomass was estimated in samples collected between 1985 and 1993
2.6.	Salinity class correction for 20112-18
3-1.	Summer trends in benthic community condition, 1985-2015
3-2.	Summer trends in benthic community attributes at mesohaline stations 1985- 2015
3-3.	Summer trends in benthic community attributes at oligohaline and tidal freshwater stations 1985-2015
3-4.	Estimated tidal area failing to meet the Chesapeake Bay benthic community restoration goals in the Chesapeake Bay, Maryland, Virginia, and each of the 10 sampling strata
3-5.	Sites severely degraded and failing the restoration goals for insufficient abundance, insufficient biomass, or both as a percentage of sites failing the goals, 1996 to 2015
3-6.	Sites failing the restoration goals for excess abundance, excess biomass, or both as a percentage of sites failing the goals, 1996 to 2015
3-7	Estimated tidal area failing to meet the Chesapeake Bay benthic community restoration goals in 2015 by Bay Health Index (BHI) Reporting Region and Tributary Basin

LIST OF FIGURES

Figure	Page
2-1.	Fixed sites sampled in 20152-2
2-2.	Fixed sites sampled from 1984 to 19892-3
2-3.	Small areas and fixed sites sampled from 1989 to 1994 2-4
2-4.	Maryland baywide sampling strata in and after 19952-9
2-5.	Maryland probability-based sampling sites for 2015 2-10
2-6.	Chesapeake Bay stratification scheme 2-12
3-1.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 01
3-2.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 06
3-3.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 15
3-4.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 22
3-5.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 23
3-6.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 24
3-7.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 26
3-8.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 29
3-9.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 36
3-10.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 40
3-11.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 43

3-12.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 44
3-13.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 47
3-14.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 51
3-15.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 52
3-16.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 62
3-17.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 64
3-18.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 66
3-19.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 68
3-20.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 71
3-21.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 74
3-22.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 77
3-23.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 79
3-24.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 201
3-25.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 202
3-26.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 203
3-27.	Trends in abundance, biomass, number of species, and B-IBI at fixed sites. Station 204

3-28.	Trends in abundance of four numerically dominant species in the tidal freshwater Potomac River at Station 36
3-29.	Results of probability-based benthic sampling of the Maryland Chesapeake Bay and its tidal tributaries in 2015
3-30.	Results of probability-based benthic sampling of the Virginia Chesapeake Bay and its tidal tributaries in 2015
3-31.	Proportion of the Chesapeake Bay, Maryland tidal waters, and Virginia tidal waters failing the Chesapeake Bay benthic community restoration goals, 1996 to 2015
3-32.	Proportion of the Maryland sampling strata failing the Chesapeake Bay benthic community restoration goals, 1995 to 2015
3-33.	Proportion of the Virginia sampling strata failing the Chesapeake Bay benthic community restoration goals, 1996 to 2015
3-34.	Proportion of the Chesapeake Bay, Maryland, Virginia, and the 10 sampling strata failing the Chesapeake Bay benthic community restorations goals in 2015
3-35.	Daily Flow entering the Chesapeake Bay from the Susquehanna River at Conowingo in 2014 and 2015, compared to the long-term average
3-36.	Hypoxic volume in Chesapeake Bay in 2015 compared to the long-term average
3-37.	Trends in abundance, biomass, number of species, B-IBI, and percent sites scoring "1" for low abundance or low biomass in Maryland tidal waters
3-38.	Trends in abundance, biomass, number of species, B-IBI, and percent sites scoring "1" for low abundance or low biomass in Chesapeake Bay
3-39.	Bay Health Index Reporting Regions and Tributary Basins

1.0 INTRODUCTION

1.1 BACKGROUND

Monitoring is a necessary part of environmental management because it provides the means for assessing the effectiveness of previous management actions and the information necessary to focus future actions (NRC 1990). Towards these ends, the State of Maryland has maintained a water quality monitoring program for Chesapeake Bay since 1984. The goals of the program are to:

- quantify the types and extent of water quality problems (i.e., characterize the "state-of-the-bay");
- determine the response of key water quality measures to pollution abatement and resource management actions;
- identify processes and mechanisms controlling the bay's water quality;
- define linkages between water quality and living resources;
- contribute information to the Chesapeake Bay Health and Restoration Reports; and
- contribute information to the Water Quality Characterization Report (305b report) and the List of Impaired Waters (303d list).

The program includes elements to measure water quality, phytoplankton, and benthic macroinvertebrates (i.e., those invertebrates retained on a 0.5-mm mesh sieve). The monitoring program includes assessments of biota because the condition of biological indicators integrates temporally variable environmental conditions and the effects of multiple types of environmental stress. In addition, most environmental regulations and contaminant control measures are designed to protect biological resources; therefore, information about the condition of biological resources provides a direct measure of the effectiveness of management actions.

The Maryland program uses benthic macroinvertebrates as biological indicators because they are reliable and sensitive indicators of habitat quality in aquatic environments. Most benthic organisms have limited mobility and cannot avoid changes in environmental conditions (Gray 1979). Benthos live in bottom sediments, where exposure to contaminants and oxygen stress is most frequent. Benthic assemblages include diverse taxa representing a variety of sizes, modes of reproduction, feeding guilds, life history characteristics, and physiological tolerances to environmental conditions; therefore, they respond to and integrate natural and anthropogenic changes in environmental conditions in

a variety of ways (Pearson and Rosenberg 1978; Warwick 1986; Dauer 1993; Wilson and Jeffrey 1994).

Benthic organisms are also important secondary producers, providing key linkages between primary producers and higher trophic levels (Virnstein 1977; Holland et al. 1980, 1989; Baird and Ulanowicz 1989; Diaz and Schaffner 1990). Benthic invertebrates are among the most important components of estuarine ecosystems and may represent the largest standing stock of organic carbon in estuaries (Frithsen 1989). Many benthic organisms, such as clams, are economically important. Others, such as polychaete annelids and small crustaceans, contribute significantly to the diets of economically important bottom feeding juvenile and adult fishes, such as spot and croaker (Homer and Boynton 1978; Homer et al. 1980).

The Chesapeake Bay Program's decision to adopt benthic community restoration goals (Ranasinghe et al. 1994 updated by Weisberg et al. 1997) enhanced use of benthic macroinvertebrates as a monitoring tool. Based largely on data collected as part of Maryland's monitoring effort, these goals describe the characteristics of benthic assemblages expected at sites exposed to little environmental stress. The restoration goals provide a quantitative benchmark against which to measure the health of sampled assemblages and ultimately the Chesapeake Bay. Submerged aquatic vegetation (Dennison et al. 1993) and benthic macroinvertebrates are the only biological communities for which such quantitative goals have been established in Chesapeake Bay.

A variety of anthropogenic stresses affect benthic macroinvertebrate communities in Chesapeake Bay. These include toxic contaminants, organic enrichment, and low dissolved oxygen. While toxic contaminants are generally restricted to urban and industrial areas typically associated with ports, low dissolved oxygen (hypoxia) is the more widespread problem, encompassing an area of about 600 million m² mainly along the deep mainstem of the bay and at the mouth of the major Chesapeake Bay tributaries (Flemer et al. 1983). Organic enrichment, associated with excess phytoplankton growth and decay, is also a major problem in some regions of the Bay.

A variety of factors contribute to the development and spatial variation of hypoxia in the Chesapeake Bay. Freshwater inflow, salinity, temperature, wind stress, and tidal circulation are primary factors in the development of hypoxia (Holland et al. 1987; Tuttle et al. 1987; Boicourt 1992). The development of vertical salinity gradients during the spring freshwater run off leads to water column density stratification. The establishment of a pycnocline, in association with periods of calm and warm weather, restricts water exchange between the surface and the bottom layers of the estuary, where oxygen consumption is large. This process is especially manifested along the Maryland mid-bay and Potomac River deep troughs. The formation or the disruption of the pycnocline is probably the most important process determining the intensity and extent of hypoxia (Seliger et al. 1985; Boicourt 1992), albeit not the only one. Biological processes contribute significantly to deep water oxygen depletion in Chesapeake Bay (Officer et al. 1984). Benthic metabolic rates increase during spring and early summer, leading to an

increase of the rate of oxygen consumption in bottom waters. This depends in part on the amount of organic carbon available for the benthos, which is derived to a large extent from seasonal phytoplankton blooms (Officer et al. 1984). Anthropogenic nutrient inputs to the Chesapeake Bay further stimulate phytoplankton growth, which results in increased deposition of organic matter to the sediments and a concomitant increase in the chemical and biological oxygen demand (Malone 1987). Winter to spring accumulation of phytoplankton biomass has been linked to depletion of bottom water oxygen in the Chesapeake Bay (Malone et al. 1988; Boynton and Kemp 2000).

The effects of hypoxia on benthic organisms vary as a function of the severity, spatial extent, and duration of the low dissolved oxygen event. Oxygen concentrations down to about 2 mg Γ^1 do not appear to significantly affect benthic organisms, although incipient community effects have been measured at 3 mg Γ^1 (Diaz and Rosenberg 1995; Ritter and Montagna 1999). Hypoxia brings about structural and organizational changes in the community, and may lead to hypoxia resistant communities. With an increase in the frequency of hypoxic events, benthic populations become dominated by fewer and short-lived species, and their overall productivity is decreased (Diaz and Rosenberg 1995). Major reductions in species numbers and abundance in the Chesapeake Bay have been attributed to hypoxia (Dauer et al. 1992, Llansó 1992). These reductions become larger both spatially and temporally as the severity and duration of hypoxic events increase. As hypoxia becomes persistent, mass mortality of benthic organisms often occurs with almost complete elimination of the macrofauna.

Hypoxia has also major impacts on the survival and behavior of a variety of benthic organisms and their predators (Diaz and Rosenberg 1995). Many infaunal species respond to low oxygen by migrating toward the sediment surface, thus potentially increasing their availability to demersal predators. On the other hand, reduction or elimination of the benthos following severe hypoxic and anoxic (absence of oxygen) events results in a reduction of food for demersal fish species and crabs. Therefore, the structural changes and species replacements that occur in communities affected by hypoxia may alter the food supply of important ecological and economical fish species in Chesapeake Bay. Given that dissolved oxygen stress and nutrient run-off are critical factors in the health of the biological resources of the Chesapeake Bay region, monitoring that evaluates benthic condition and tracks changes over time helps Chesapeake Bay managers assess the effectiveness of nutrient reduction efforts and the status of the biological resources of one of the largest and most productive estuaries in the nation.

1.2 OBJECTIVES OF THIS REPORT

This report is part of a series of Level I Comprehensive reports produced annually by the Long-Term Benthic Monitoring and Assessment Component (LTB) of the Maryland Chesapeake Bay Water Quality Monitoring Program. Level I reports summarize data from the latest sampling year and provide a limited examination of how conditions in the latest year differ from conditions in previous years of the study, as well as how data from this year contribute to describing trends in the Bay's condition.

Introduction

The report reflects the maturity of the current program focus and design. Approaches introduced when the new program design was implemented in 1995 continue to be extended, developed, and better defined. The level of detail in which changes are examined at the fixed stations sampled for trend analysis continues to increase. For example, we report on how species contribute to changes in condition and discuss trends in relation to changes in water quality. The Chesapeake Bay Benthic Index of Biotic Integrity (B-IBI) is applied to each sampling site, from tidal freshwater to polyhaline zones, and thus provides a uniform measure of ecological condition across the estuarine gradient. In describing baywide benthic community condition, estimates of degraded condition are presented for all subregions of the Bay, and community measures that contribute to restoration goal failure are used to diagnose the causes of failure.

The continued presentation of estimates of Bay area meeting the Chesapeake Bay Program benthic community restoration goals, rather than Maryland estimates only, reflects improved coordination and unification of objectives among the Maryland and Virginia benthic monitoring programs. The sampling design and methods in both states are compatible and complementary.

In addition to the improvements in technical content, we have enhanced electronic production and transmittal of data. Data and program information are available to the research community and the general public through the Chesapeake Bay Benthic Monitoring Program Home Page on the World-Wide-Web at <u>http://www.baybenthos.versar</u>.com. Expansion of the website continues, with new program information, data, and documents being added every year. The 2015 data, as well as the data from previous years, can be downloaded from this website. The Benthic Monitoring Program Home Page represents the culmination of collaborative efforts between Versar, Maryland DNR, and the Chesapeake Information Management System (CIMS). The activities that Versar undertakes as a partner of CIMS were recorded in a Memorandum of Agreement signed October 28, 1999.

1.3 ORGANIZATION OF REPORT

This report has two volumes. Volume 1 is organized into five major sections and three appendices. Section 1 is this introduction. Section 2 presents the field, laboratory, and data analysis methods used to collect, process, and evaluate the LTB samples. Section 3 presents the results of analyses conducted for 2015, and consists of two assessments: an assessment of trends in benthic community condition at the fixed sites sampled annually by LTB in the Maryland Chesapeake Bay, and an assessment of the area of the Bay that meets the Chesapeake Bay Benthic Community Restoration Goals. Section 4 discusses the results and evaluates status and trends relative to changes in water quality. Section 5 is the literature cited in the report. Appendix A amplifies information presented in Table 3-2 and Table 3-3 by providing rates of change for the 1985-2015 fixed site trend analysis. Appendices B and C present the B-IBI values for the 2015 fixed and

random sampling components, respectively. Finally, Volume 2 consists of the benthic, sedimentary, and hydrographic data appendices.

Introduction

2.0 METHODS

2.1 SAMPLING DESIGN

The LTB sampling program contains two primary elements: a fixed site monitoring effort directed at identifying trends in benthic condition and a probability-based sampling effort intended to estimate the area of the Maryland Chesapeake Bay with benthic communities meeting the Chesapeake Bay Program's benthic community restoration goals (Ranasinghe et al. 1994, updated by Weisberg et al. 1997; Alden et al. 2002). The sampling design for each of these elements is described below.

2.1.1 Fixed Site Sampling

The fixed site element of the program involves sampling at 27 sites, 23 of which have been sampled since the program's inception in 1984, 2 since 1989, and 2 since 1995 (Figure 2-1). Sites are defined by geography (within 1 km from a fixed location), and by specific depth and substrate criteria (Table 2-1).

The 2015 fixed site sampling continues trend measurements, which began with the program's initiation in 1984. In the first five years of the program, from July 1984 to June 1989, 70 fixed stations were sampled 8 to 10 times per year. On each visit, three benthic samples were collected at each site and processed. Locations of the 70 fixed sites are shown in Figure 2-2.

In the second five years of the program, from July 1989 to June 1994, fixed site sampling was continued at 29 sites and a stratified random sampling element was added. Samples were collected at random from approximately 25 km² small areas surrounding these sites (Figure 2-3) to assess the representativeness of the fixed locations. Sites 06, 47, 62, and 77, which are part of the current design, were not sampled during this five-year period. Stratum boundaries were delineated on the basis of environmental factors that are important in controlling benthic community distributions: salinity regime, sediment type, and bottom depth (Holland et al. 1989). In addition, four new areas were established in regions of the Bay targeted for management actions to abate pollution: the Patuxent River, Choptank River, and two areas in Baltimore Harbor. Each area was sampled four to six times each year.

From July 1994 through 2008, three replicate samples were collected in spring and summer at most of the current suite of 27 sites (Stations 203 and 204 were added in 1995, Table 2-1, Figure 2-1). This sampling regime was selected as being most cost effective after analysis of the first 10 years of data jointly with the Virginia Benthic Monitoring Program (Alden et al. 1997). Starting in 2009, spring sampling was eliminated due to budgetary constraints.

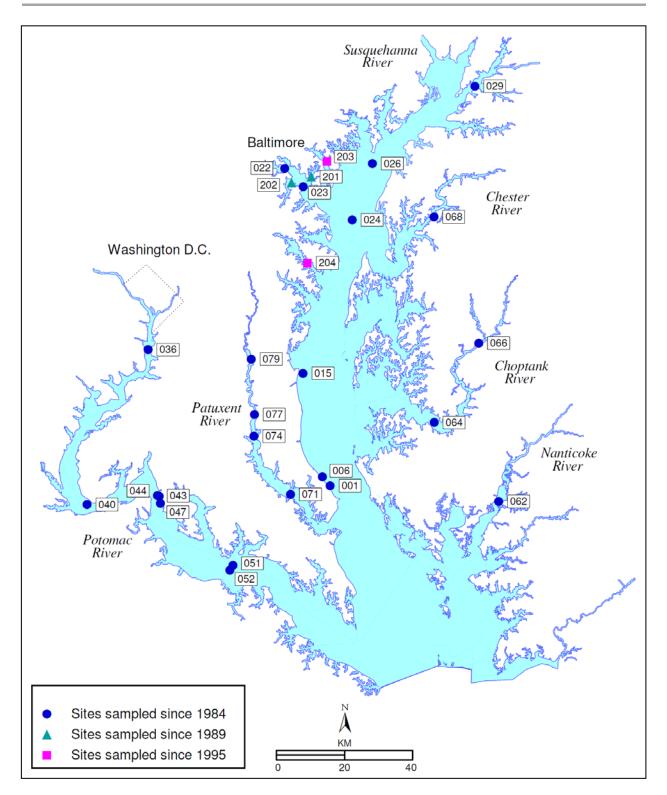


Figure 2-1. Fixed sites sampled in 2015

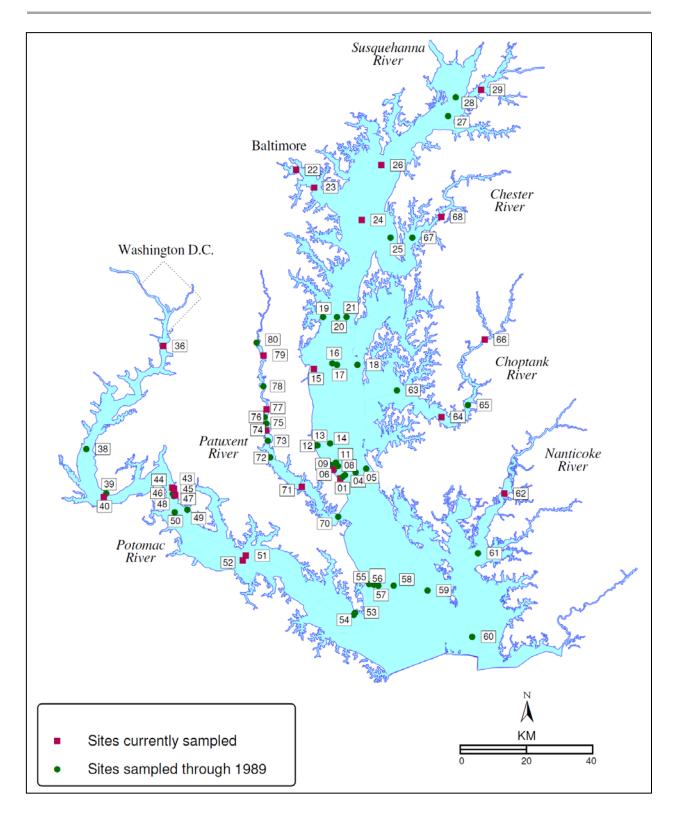


Figure 2-2. Fixed sites sampled from 1984 to 1989; some of these sites are part of the current design

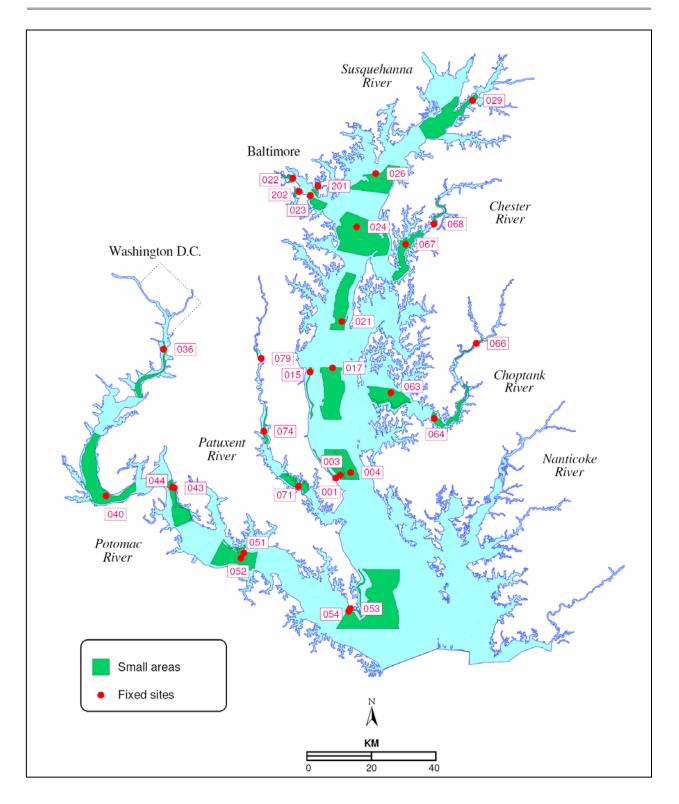


Figure 2-3. Small areas and fixed sites sampled from 1989 to 1994

	Sub-			LatitudeLongitudeSampleStation(WGS84)(WGS84)Gea	Sompling	Habitat Criteria			
	Estuary	Habitat	Station		•	Sampling Gear	Depth (m)	Siltclay (%)	Distance (km)
Potomac River	Potomac River	Tidal Freshwater	036	38.769788	-77.037534	WildCo Box Corer	< = 5	>=40	1.0
		Oligohaline	040	38.357466	-77.230537	WildCo Box Corer	6.5-10	>=80	1.0
		Low Mesohaline	043	38.384479	-76.988329	Modified Box Corer	< = 5	< = 30	1.0
		Low Mesohaline	047	38.363825	-76.983737	Modified Box Corer	< = 5	< = 30	0.5
		Low Mesohaline	044	38.385633	-76.995698	WildCo Box Corer	11-17	> = 75	1.0
		High Mesohaline Sand	051	38.205355	-76.738622	Modified Box Corer	< = 5	< = 20	1.0
		High Mesohaline Mud	052	38.192304	-76.747689	WildCo Box Corer	9-13	>=60	1.0
Patuxent River	Patuxent River	Tidal Freshwater	079	38.750457	-76.689023	WildCo Box Corer	< = 6	>=50	1.0
		Low Mesohaline	077	38.604461	-76.675020	WildCo Box Corer	< = 5	>=50	1.0
		Low Mesohaline	074	38.548962	-76.676186	WildCo Box Corer	< = 5	>=50	0.5
		High Mesohaline Mud	071	38.395132	-76.548847	WildCo Box Corer	12-18	> = 70	1.0

Table 2-1. (Continued)								
								Habitat Criteria	
Stratum	Sub-Estuary	Habitat	Station	Latitude (WGS84)	Longitude (WGS84)	Sampling Gear	Depth (m)	Siltclay (%)	Distance (km)
Upper Western Tributaries	Patapsco River	Low Mesohaline	023	39.208283	-76.523354	WildCo Box Corer	4-7	>=50	1.0
	Middle Branch	Low Mesohaline	022*	39.258082	-76.59512	WildCo Box Corer	2-6	>=40	1.0
	Bear Creek	Low Mesohaline	201	39.234167	-76.497501	WildCo Box Corer	2-4.5	> = 70	1.0
	Curtis Bay	Low Mesohaline	202	39.217839	-76.564171	WildCo Box Corer	5-8	>=60	1.0
	Back River	Oligohaline	203	39.275005	-76.444508	Young- Grab	1.5-2.5	>=80	1.0
	Severn River	High Mesohaline Mud	204	39.006954	-76.504955	Young- Grab	5-7.5	> = 50	1.0
Eastern Tributaries	Chester River	Low Mesohaline	068	39.132509	-76.078780	WildCo Box Corer	4-8	> = 70	1.0
	Choptank River	Oligohaline	066	38.801455	-75.921827	WildCo Box Corer	< = 5	>=60	1.0
		High Mesohaline Mud	064	38.590459	-76.069331	WildCo Box Corer	7-11	>=70	1.0
	Nanticoke River	Low Mesohaline	062	38.383960	-75.849990	Petite Ponar Grab	5-8	> = 75	1.0

Table 2-1.	Table 2-1. (Continued)										
							Habitat Criteria		eria		
Stratum	Sub- Estuary	Habitat	Station	Latitude (WGS84)	Longitude (WGS84)	Sampling Gear	Depth (m)	Siltclay (%)	Distance (km)		
Upper Bay	Elk River	Oligohaline	029	39.479505	-75.944836	WildCo Box Corer	3-7	>=40	1.0		
	Mainstem	Low Mesohaline	026	39.271450	-76.290013	WildCo Box Corer	2-5	> = 70	1.0		
		High Mesohaline Mud	024	39.122004	-76.355673	WildCo Box Corer	5-8	>=80	1.0		
Mid Bay	Mainstem	High Mesohaline Sand	015	38.715126	-76.513679	Modified Box Corer	< = 5	< = 10	1.0		
		High Mesohaline Sand	001	38.419001	-76.418385	Modified Box Corer	< = 5	< = 20	1.0		
		High Mesohaline Sand	006	38.442000	-76.444261	Modified Box Corer	< = 5	< = 20	0.5		

2.1.2 Probability-based Sampling

The second sampling element, which was instituted in 1994, was probability-based summer sampling designed to estimate the area of the Maryland Chesapeake Bay and its tributaries that meet the Chesapeake Bay benthic community restoration goals (Ranasinghe et al. 1994, updated by Weisberg et al. 1997; Alden et al. 2002). Different probability sample allocation strategies were used in 1994 than in later years. In 1994, the design was intended to estimate impaired area for the Maryland Bay and one sub-region, while in later years the design targeted five additional sub-regions as well.

The 1994 sample allocation scheme was designed to produce estimates for the Maryland Bay and the Potomac River. The Maryland Bay was divided into three strata with samples allocated unequally among them (Table 2-2); sampling intensity in the Potomac was increased to permit estimation of degraded area with adequate confidence, while mainstem and other tributary and embayment samples were allocated in proportion to their area.

Table 2-2. Allocation of probability-based baywide samples, 1994								
	Are	ea	Number of					
Stratum	km ²	%	Samples					
Maryland Mainstem (including Tangier and Pocomoke Sounds)	3,611	55.5	27					
Potomac River	1,850	28.4	28					
Other tributaries and embayments	1,050	16.1	11					

In subsequent years, the stratification scheme was designed to produce an annual estimate for the Maryland Bay and six subdivisions. Samples were allocated equally among strata (Figure 2-4, Table 2-3). According to this allocation, a fresh new set of sampling sites were selected each year. Figure 2-5 shows the locations of the probability-based Maryland sampling sites for 2015. Regions of the Maryland mainstem deeper than 12 m were not included in sampling strata because these areas are subjected to summer anoxia and have consistently been found to be azoic.

A similar stratification scheme has been used by the Commonwealth of Virginia since 1996, permitting annual estimates for the extent of area meeting the benthic community restoration goals for the entire Chesapeake Bay (Table 2-3, Figure 2-6). These samples were collected and processed, and the data analyzed by the Virginia Chesapeake Bay Benthic Monitoring Program.

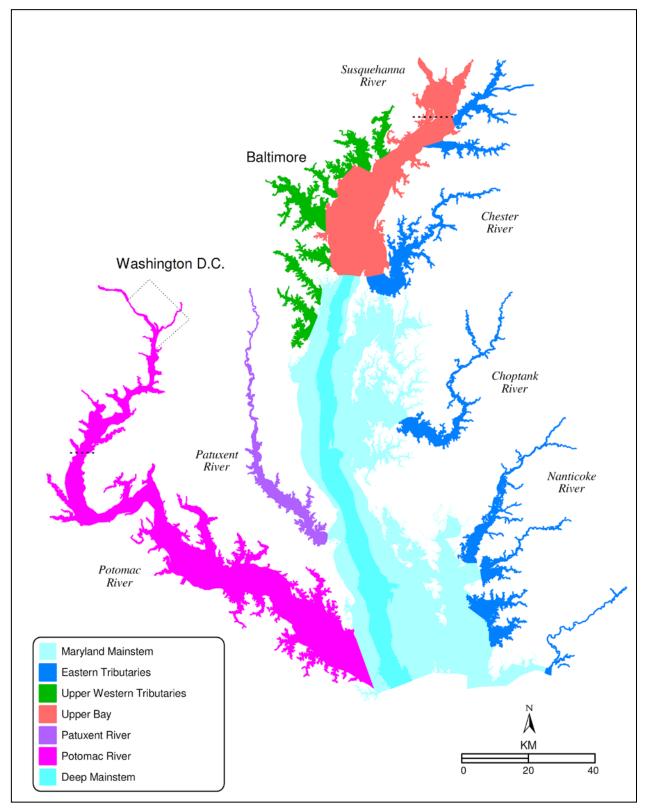


Figure 2-4. Maryland baywide sampling strata in and after 1995

Methods

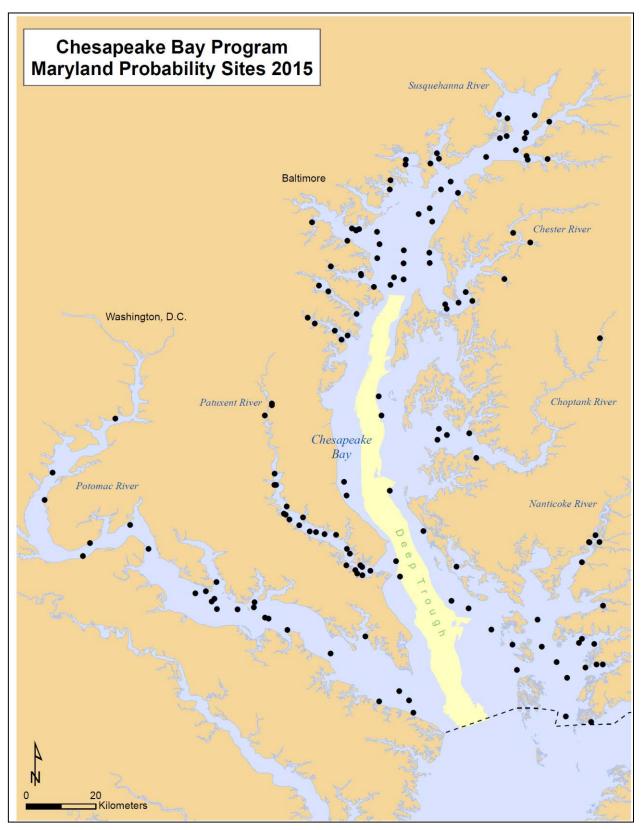


Figure 2-5. Maryland probability-based sampling sites for 2015

Table 2-3.	Allocation of probability-based baywide samples, in and after 1995. Maryland areas exclude 676 km ² of mainstem habitat deeper than 12 m. Virginia strata were sampled by the Virginia Chesapeake Bay Benthic Monitoring Program commencing in 1996.									
	Δrea									
State	Stratum	km ²	State %	Bay %	Number of Samples					
Maryland	Deep Mainstem	676	10.8	5.8	0					
	Mid Bay Mainstem	2,552	40.9	22.0	25					
	Eastern Tributaries	534	8.6	4.6	25					
	Western Tributaries	292	4.7	2.5	25					
	Upper Bay Mainstem	785	12.6	6.8	25					
	Patuxent River	128	2.0	1.1	25					
	Potomac River*	1,276	20.4	11.0	25					
	TOTAL	6,243	100.0	53.8	150					
Virginia	Mainstem	4,120	76.8	35.5	25					
	Rappahannock River	372	6.9	3.2	25					
	York River	187	3.5	1.6	25					
	James River	684	12.8	5.9	25					
	TOTAL	5,363	100.0	46.2	100					
*Excludes \	/irginia tidal creeks and	district of (Columbia wat	ters						

2.2 SAMPLE COLLECTION

2.2.1 Station Location

From July 1984 to June 1996, stations were located using Loran-C. After June 1996 stations were located using a differential Global Positioning System. The WGS84 coordinate system (undistinguishable in practice from NAD83) is currently used.

2.2.2 Water Column Measurements

Water column vertical profiles of temperature, conductivity, salinity, dissolved oxygen concentration (DO), and pH were measured at each site. Oxidation reduction potential (ORP) was measured prior to 1996. For fixed sites, profiles consisted of water quality measurements at 1 m intervals from surface to bottom at sites 7 m deep or less, and at 3 m intervals, with additional measurements at 1.5 m intervals in the vicinity of the pycnocline, at sites deeper than 7 m. Surface and bottom measurements were made at all other sampling sites. Table 2-4 lists the measurement methods used.

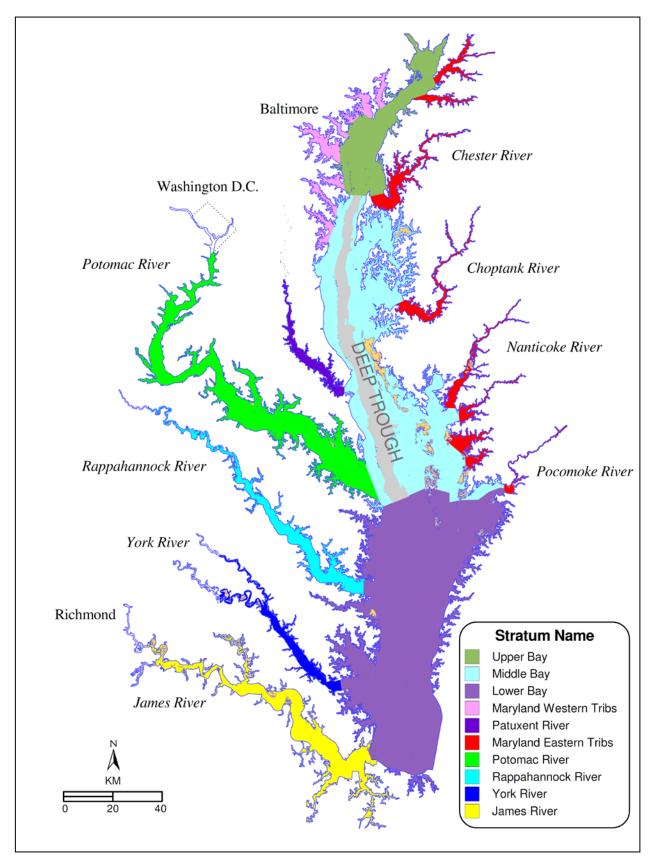


Figure 2-6. Chesapeake Bay stratification scheme

Table 2-4. Methods used to measure water quality parameters		
Parameter	Period	Method
Temperature	July 1984 to November 1984	Thermistor attached to Beckman Model RS5- 3 salinometer
	December 1984 to December 1995	Thermistor attached to Hydrolab Surveyor II
	January 1996 to present	Thermistor attached to YSI-6600 Sonde or Hydrolab DataSonde 4a
Salinity and Conductivity	July to November 1984	Beckman Model RS5-3 salinometer toroidal conductivity cell with thermistor temperature compensation
	December 1984 to December 1995	Hydrolab Surveyor II nickel six-pin electrode- salt water cell block combination with automatic temperature compensation
	January 1996 to present	YSI-6600 four nickel electrode cell, or Hydrolab DataSonde 4a four graphite electrode cell (open-cell design), with automatic temperature compensation
Dissolved Oxygen	July to November 1984	YSI Model 57 or Model 58 Oxygen Meter with automatic temperature and manual salinity compensation
	December 1984 to December 1995	Hydrolab Surveyor II membrane design probe with automatic temperature and salinity compensation
	January 1996 to present	YSI-6600 Rapid Pulse, or Hydrolab DataSonde 4a, membrane-design DO sensor with automatic temperature and salinity compensation
pΗ	July to November 1984	Orion analog pH meter with Ross glass combination electrode manually compensated for temperature
	December 1984 to December 1995	Hydrolab Surveyor II glass pH electrode and Lazaran reference electrode automatically compensated for temperature
	January 1996 to present	YSI-6600 combined pH and gel reference sensor, or Hydrolab DataSonde 4a pH and glass bulb reference sensors, automatically compensated for temperature
Oxidation Reduction Potential	December 1984 to December 1995	Hydrolab Surveyor II platinum banded glass ORP electrode

2.2.3 Benthic Samples

Samples were collected using four kinds of gear depending on the program element and habitat type. For the fixed site element (Table 2-1), a hand-operated box corer ("modified box corer"), which samples a 250 cm² area to a depth of 25 cm, was used in the nearshore shallow sandy habitats of the mainstem bay and tributaries. A Wildco box corer, which samples an area of 220 cm² to a depth of 23 cm, was used in shallow muddy or deep-water (> 5 m) habitats in the mainstem bay and tributaries. A Petite Ponar Grab, which samples 250 cm² to a depth of 7 cm, was used at the fixed site in the Nanticoke River to be consistent with previous sampling in the 1980s. At the two fixed sites first sampled in 1995 and at all probability-based sampling sites, a Young Grab, which samples an area of 440 cm² to a depth of 10 cm, was used.

Sample volume and penetration depth were measured for all samples; Wildco and hand-operated box cores penetrating less than 15 cm, and Young and Petite Ponar grabs penetrating less than 7 cm into the sediment were rejected and the site was re-sampled.

In the field, samples were sieved through a 0.5-mm screen using an elutriative process. Organisms and detritus retained on the screen were transferred into labeled jars and preserved in a 10% formaldehyde solution stained with Rose Bengal (a vital stain that aids in separating organisms from sediments and detritus).

Two surface-sediment sub-samples of approximately 120 ml each were collected for grain-size, carbon, and nitrogen analysis from an additional grab sample at each site. Surface sediment samples were frozen until they were processed in the laboratory.

2.3 LABORATORY PROCESSING

Organisms were sorted from detritus under dissecting microscopes, identified to the lowest practical taxonomic level (most often species), and counted. Oligochaetes and chironomids were mounted on slides and examined under a compound microscope for genus and species identification.

Ash-free dry weight biomass was determined by three comparable techniques during the sampling period. For samples collected from July 1984 to June 1985, biomass was directly measured using an analytical balance for major organism groups (e.g., polychaetes, molluscs, and crustaceans). Ash-free dry weight biomass was determined by drying the organisms to a constant weight at 60 °C and ashing in a muffle furnace at 500 °C for four hours. For samples collected between July 1985 and August 1993, a regression relationship between ash-free dry weight biomass and size of morphometric characters was defined for 22 species (Ranasinghe et al. 1993). The biomass of the 22 selected species was estimated from these regression relationships. These taxa (Table 2-5) were selected because they accounted for more than 85% of the abundance (Holland et al. 1988). After August 1993, ash-free dry weight biomass was measured directly for each species by drying the organisms to a constant weight at 60 °C and ashing in a muffle furnace at 500 °C for four hours and re-weighing (ash weight). The difference between the dry weight and the ash weight is the ash-free dry weight. Bivalves were crushed to open the shells and expose the animal to drying and ashing (shells included).

Table 2-5.Taxa for which biomass was1985 and 1993	estimated in samples collected between				
Polychaeta	Mollusca				
Eteone heteropoda	Acteocina canaliculata				
Glycinde solitaria	Corbicula fluminea				
Heteromastus filiformis	Gemma gemma				
Marenzelleria viridis	Haminoea solitaria				
Neanthes succinea	Macoma balthica				
Paraprionospio pinnata	Macoma mitchelli				
Streblospio benedicti	Mulinia lateralis				
	Mya arenaria				
	Rangia cuneata				
	Tagelus plebeius				
Crustacea					
Cyathura polita					
Gammarus spp.					
Leptocheirus plumulosus					
Nemertina					
Carinoma tremaphoros					
Micrura leidyi					

Silt-clay composition and carbon and nitrogen content were determined for one of the two sediment sub-samples collected at each sampling site. The other sample was archived for quality assurance purposes (Scott et al. 1988). Sand and silt-clay particles were separated by wet-sieving through a 63-µm, stainless steel sieve and weighed using the procedures described in the Versar, Inc., Laboratory Standard Operating Procedures (Versar 1999). Carbon and nitrogen content of dried sediments was determined using an elemental analyzer. Sediment carbon content was measured with a Perkin-Elmer Model 240B analyzer from 1984 to 1988, and an Exeter Analytical Inc., Model CE-440 analyzer in and after 1995. The results from both instruments are comparable. Samples were combusted at high temperature (975 °C) and the carbon dioxide and nitrogen produced were measured by thermal conductivity detection. Prior to combustion, each sample was homogenized and oven-dried. No acid was applied.

2.4 DATA ANALYSIS

Analyses for the fixed site and probability-based elements of LTB were both performed in the context of the Chesapeake Bay Program's benthic community restoration goals and the Benthic Index of Biotic Integrity (B-IBI) by which goal attainment is measured. The B-IBI, the Chesapeake Bay benthic community restoration goals, and statistical analysis methods for the two LTB elements are described below.

2.4.1 The B-IBI and the Chesapeake Bay Benthic Community Restoration Goals

The B-IBI is a multiple-attribute index developed to identify the degree to which a benthic assemblage meets the Chesapeake Bay Program's benthic community restoration goals (Ranasinghe et al. 1994, updated by Weisberg et al. 1997; Alden et al. 2002). The B-IBI provides a means for comparing relative condition of benthic invertebrate assemblages across habitat types. It also provides a validated mechanism for integrating several benthic community attributes indicative of habitat "health" into a single number that measures overall benthic community condition.

The B-IBI is scaled from 1 to 5, and sites with values of 3 or more are considered to meet the restoration goals. The index is calculated by scoring each of several attributes as either 5, 3, or 1 depending on whether the value of the attribute at a site approximates, deviates slightly from, or deviates strongly from values found at the best reference sites in similar habitats, and then averaging these scores across attributes. The criteria for assigning these scores are numeric and depend on habitat. Data from seasons for which the B-IBI has not been developed were not used for B-IBI based assessment.

Benthic community condition was classified into four levels based on the B-IBI. Values less than or equal to 2.0 were classified as severely degraded; values from 2.0 to 2.6 were classified as degraded; values greater than 2.6 but less than 3.0 were classified as marginal; and values of 3.0 or more were classified as meeting the goals. Values in the marginal category do not meet the restoration goals, but they differ from the goals within the range of measurement error typically recorded between replicate samples.

2.4.2 Fixed Site Trend Analysis

Trends in condition at the fixed sites were identified using the nonparametric technique of van Belle and Hughes (1984). This procedure is based on the Mann-Kendall statistic and consists of a sign test comparing each value with all values measured in subsequent periods. The ratio of the Mann-Kendall statistic to its variance provides a normal deviate that is tested for significance. Alpha was set to 0.1 for these tests because of the low power for trend detection for biological data. An estimate of the magnitude of each significant trend was obtained using Sen's (1968) procedure which is

closely related to the Mann-Kendall test. Sen's procedure identifies the median slope among all slopes between each value and all values measured in subsequent periods.

2.4.3 Probability-based Estimation

The Maryland Bay was divided into three strata (Bay Mainstem, Potomac River, other tributaries and embayments) in 1994 (Table 2-2). It was divided into six strata in and after 1995 (Figure 2-4, Table 2-3). The Virginia Bay was divided into four strata, beginning in 1996 (Figure 2-6, Table 2-3).

To estimate the amount of area in the entire Bay that failed to meet the Chesapeake Bay benthic community restoration goals (P), we defined for every site *i* in stratum *h* a variable y_{hi} that had a value of 1 if the benthic community met the goals, and 0 otherwise. For each stratum, the estimated proportion of area meeting the goals, p_{h} , and its variance were calculated as the mean of the y_{hi} 's and its variance, as follows:

$$\mathbf{p}_{h} = \overline{\mathbf{y}}_{h} = \sum_{i=1}^{n_{h}} \frac{\mathbf{y}_{hi}}{n_{h}}$$
(1)

and

$$var(p_{h}) = s_{h}^{2} = \sum_{i=1}^{n_{h}} \frac{(\gamma_{hi} - \overline{\gamma}_{h})^{2}}{n_{h} - 1}$$
 (2)

Estimates for strata were combined to achieve a statewide estimate as:

$$\hat{\mathsf{P}}_{ps} = \overline{\mathsf{y}}_{ps} = \sum_{h=1}^{6} \mathsf{W}_{h} \overline{\mathsf{y}}_{h} \tag{3}$$

where the weighting factor $W_h = A_h/A$; A_h is the total area of the *h*th stratum, and A is the combined area of all strata. The variance of (3) was estimated as:

$$var\left(\hat{P}_{ps}\right) = var\left(\overline{y}_{ps}\right) = \sum_{h=1}^{6} W_{h}^{2} s_{h}^{2} / n_{h}$$
(4)

The standard error for individual strata is estimated as the square root of (2), and for the combined strata, as the square root of (4).

2.4.4 B-IBI Salinity Habitat Class Correction in 2011

Because of two storms in 2011 (Hurricane Irene on 27 August and Tropical Storm Lee on 7 September), salinities were very low after these two storms. Many of the probability-based sites that year were sampled after 27 August and during and after

7 September. Areas in the upper Chesapeake Bay that are in the low mesohaline range, had tidal freshwater bottom salinities after Lee. The species composition of some of the 2011 sites was compared with the species composition of nearby sites sampled in 2010. The species composition was similar in both years. However, because of habitat salinity class differences, the B-IBI was quite different when calculated on the lower salinity classes of 2011. Therefore, a salinity habitat class correction was necessary for making the B-IBI more comparable to previous years. Box plots of bottom salinity were constructed for all sites, 1995-2010. Five years for which the salinity was clearly too high or too low (1995, 1996, 1999, 2002, and 2004) were removed. Using GIS, the bottom salinity values of the remaining years were mapped and the 2011 sites were superimposed on the map. The salinity class of the 2011 sites was then re-assigned to reflect the predominant salinity class of the average year. Some of the 2011 sites did not need reassignment because their salinity, although low (e.g., 6) was still within the salinity class of the average year (e.g., 5-12). Affected sites included many of the sites in the Upper Bay stratum, and some of the sites in the Maryland Eastern Tributaries, Maryland Western Tributaries, Mainstem, and Patuxent and Potomac rivers (Table 2-6). The salinity class of probability-based sites sampled prior to the storms was not evaluated nor re-assigned. The 2011 sites in Virginia were all sampled prior to the storms so they did not need reassignment nor did they exhibit lower salinity than expected.

Table 2-6. Salinity class correction for 2011.							
Stratum	Site	Original	Corrected				
Maryland Mid Bay	MMS-18512	Low Mesohaline	High Mesohaline				
Mainstem	MMS-18514	Low Mesohaline	High Mesohaline				
	MMS-18519	Low Mesohaline	High Mesohaline				
	MMS-18520	Low Mesohaline	High Mesohaline				
	MMS-18522	Low Mesohaline	High Mesohaline				
	MMS-18523	Low Mesohaline	High Mesohaline				
	MMS-18524	Low Mesohaline	High Mesohaline				
Maryland Eastern	MET-18406	Low Mesohaline	High Mesohaline				
Tributaries	MET-18407	Low Mesohaline	High Mesohaline				
	MET-18408	Low Mesohaline	High Mesohaline				
	MET-18409	Oligohaline	High Mesohaline				
	MET-18410	Tidal Fresh	Oligohaline				
	MET-18414	Oligohaline	Low Mesohaline				
	MET-18426	Tidal Fresh	Oligohaline				
Maryland Western	MWT-18318	Tidal Fresh	Low Mesohaline				
Tributaries	MWT-18319	Tidal Fresh	Low Mesohaline				
	MWT-18320	Tidal Fresh	Low Mesohaline				
	MWT-18321	Tidal Fresh	Low Mesohaline				
	MWT-18322	Tidal Fresh	Low Mesohaline				
	MWT-18324	Tidal Fresh	Oligohaline				

Stratum	Site	Original	Corrected	
	MWT-18325	Tidal Fresh	Oligohaline	
Maryland Upper Bay	UPB-18607	Oligohaline	Low Mesohaline	
Mainstem	UPB-18608	Oligohaline	Low Mesohaline	
	UPB-18609	Oligohaline	Low Mesohaline	
	UPB-18610	Oligohaline	Low Mesohaline	
	UPB-18611	Oligohaline	Low Mesohaline	
	UPB-18612	Oligohaline	Low Mesohaline	
	UPB-18613	Oligohaline	Low Mesohaline	
	UPB-18614	Tidal Fresh	Low Mesohaline	
	UPB-18615	Oligohaline	Low Mesohaline	
	UPB-18616	Oligohaline	Low Mesohaline	
	UPB-18617	Tidal Fresh	Low Mesohaline	
	UPB-18619	Tidal Fresh	Low Mesohaline	
	UPB-18620	Tidal Fresh	Low Mesohaline	
	UPB-18621	Tidal Fresh	Low Mesohaline	
	UPB-18622	Tidal Fresh	Oligohaline	
Patuxent River	PXR-18204	Low Mesohaline	High Mesohaline	
	PXR-18221	Tidal Fresh	Oligohaline	
	PXR-18222	Tidal Fresh	Oligohaline	
	PXR-18223	Tidal Fresh	Oligohaline	
Potomac River	PMR-18118	Oligohaline	Low Mesohaline	
	PMR-18119	Oligohaline	Low Mesohaline	

Methods

3.0 RESULTS

3.1 TRENDS IN FIXED SITE BENTHIC CONDITION

Trend analysis is conducted on 27 fixed sites located throughout the Bay and its tributaries to assess whether benthic community condition is changing. Through 2008 the sites were sampled yearly in the spring and summer. Since 2009, sites are sampled in the summer only. The trend analysis is performed on the summer data only in order to apply the B-IBI (Weisberg et al. 1997; Alden et al. 2002). B-IBI calculations and trend analysis methods are described in Section 2.4.

The B-IBI is the primary measure used in trend analysis because it integrates several benthic community attributes into a measure of overall condition. It provides context for interpretation of observed trends because status has been calibrated to reference conditions. Significant trends that result in a change of status (sites that previously met the Chesapeake Bay benthic community restoration goals which now fail, or vice versa) are of greater management interest than trends which do not result in a change. As a first step in identifying causes of changes in condition, trends on individual attributes are identified and examined.

Table 3-1 presents trends in benthic community condition from 1985 to the present. Although the Maryland benthic monitoring component began sampling in 1984, data collected in the first year of our program were excluded from analysis to facilitate comparison of results with other components of the monitoring program. Several components of the Maryland program as well as the Virginia Benthic Monitoring Program did not start sampling until 1985. Thirty one-year (1985-2015) trends are presented for 23 of the 27 trend sites, 27-year trends are presented for two sites in Baltimore Harbor (Stations 201 and 202) first sampled in 1989, and 21-year trends are presented for two western shore tributaries (Back River Station 203, and Severn River Station 204) first sampled in 1995. Trend site locations are shown in Figure 2-1.

Statistically significant B-IBI trends (10% significance level) were detected at 12 of the 27 sites (Table 3-1), one less trend than in 2014. If a 5% significance level is chosen, the number of statistically significant B-IBI trends is 11, so the 10% level is kept to be consistent with previous reports. One trend was new and two trends disappeared with the addition of the 2015 data. Trends in benthic community condition declined at 8 sites (significantly decreasing B-IBI score) and improved at 4 sites (significantly increasing B-IBI score). Except for the new trend (improving condition), trend directions did not change over those reported for 2014.

Sites with improving condition (Table 3-1) were located in the upper Bay mainstem (Station 26), mesohaline Choptank River (Station 64), Bear Creek (Station 201), and Back River (Station 203). Sites with declining condition (Table 3-1) were located in Baltimore Harbor (Station 22), Curtis Creek (Station 202), Patuxent River at Holland Cliff (Station

77), Patuxent River at Broomes Island (Station 71), tidal fresh Potomac River (Station 36), mesohaline Potomac River at Morgantown (Stations 43 and 44), and Nanticoke River (Station 62).

Changes in 2015 from 2014 results were the appearance of an improving B-IBI trend in the Patapsco River estuary at Bear Creek (Station 201), and the disappearance of declining B-IBI trends in the mid-bay mainstem at Calvert Cliffs (Station 001) and the Potomac River at St. Clements Island (Station 52). Using the last three years of data (2013-2015), the average B-IBI score remained within the same condition category at most sites, and improved at 10 sites relative to the 2012-2014 period (Table 3-1). For the 2015 reporting year, B-IBI scores increased at 8 sites, but also decreased in as many sites. However, current conditions based on the last three years of monitoring improved significantly.

The current condition at the fixed sites (Table 3-1 shaded areas) improved from severely degraded to degraded at 3 sites (Potomac River Station 36, Patapsco River Station 23, and Bear Creek Station 201), from degraded to marginal at 2 sites (Elk River Station 29 and Potomac River Station 44), and from marginal to meeting the goals at 5 sites (mid-bay mainstem Stations 001 and 006, Potomac River Station 51, Back River Station 203, and Severn River Station 204). Currently, 13 sites meet the benthic community restoration goals and 14 sites fail the goals, an increase in the number of sites meeting the restoration goals over that reported last year.

Trends in community attributes that are components of the B-IBI are presented in Table 3-2 (mesohaline stations), Table 3-3 (oligohaline and tidal freshwater stations), and Appendix A. Sites with decreasing B-IBI trends had declining trends (declining below restorative thresholds) in abundance, biomass, or both, and usually in at least two other components of the B-IBI (Table 3-2). Exceptions were Stations 43 and 36. Station 43 had declining trends in abundance and biomass that indicated improving condition, i.e., improving from excess abundance and biomass. Conversely, Station 36 had an increasing trend in abundance that indicated degrading conditions, i.e., degrading due to excess abundance. Several sites without B-IBI trends also exhibited statistically significant, degrading trends in abundance, biomass, Shannon diversity, and (not shown in Table 3-2) number of species.

Figures 3-1 through 3-27 show patterns in abundance, biomass, number of species, and B-IBI at the fixed sites. For 2011-2014 we reported decreasing trends in abundance at most of the mesohaline sites, with overall lower abundance during the 1998-2014 period than during the 1984-1997 period. Species numbers also showed decreasing trends at many of the mesohaline sites. This pattern remains mostly unchanged. Using the Mann-Kendall test, 11 sites had significant declining trends in abundance, 13 sites had significant declining trends in abundance, but in the direction of excess abundance (degrading). In 2015, however, a majority of the sites showed small to large increases in abundance (78% of the sites), number of species (81%), biomass (63%),

and B-IBI score (63%). These improvements in the B-IBI and key components of the B-IBI reflected better water quality conditions in 2015 than in the preceding year. Similar improvements were noted in 2013 and 2014.

Three sites showed consistent declines across metrics (abundance, number of species, biomass, and B-IBI score). These sites were located in the upper Choptank River (Figure 3-18) and upper Patuxent River (Figures 3-22 and 3-23).

The tidal fresh Potomac River (Station 36) and the Nanticoke River (Station 62) exhibited decreases in abundance in 2015 (Figures 3-9 and 3-16). However, these were decreases in densities of organisms that are considered tolerant of pollution, and therefore reflect improvements in benthic community condition in 2015. Both stations exhibit excess abundance of organisms above restorative thresholds and degrading <u>trends</u> over time, indicating organic enrichment as the most likely cause of degradation.

In the Potomac River (and to a lesser extent in the Nanticoke River) the benthic community is numerically dominated by tubificid oligochaete worms, which account for most of the biomass (Figure 3-28). The benthic community was previously dominated by the bivalve *Corbicula fluminea*, but the abundance of this bivalve has decreased from 4,500 individuals m⁻² in 1984 to zero individuals m⁻² in 2015 (Figure 3-28). In 2014 *Corbicula* was found at Station 36 and in additional grab samples taken immediately upstream and downstream of the fixed location, but densities were very low. The sharp decline over time in abundance of *Corbicula fluminea* at the sampling sites in the Potomac River may be related to the patchiness of *Corbicula fluminea*, the normal post-invasion population decline, and the improving water quality conditions in the river, which may have caused a reduction in microalgal biomass on which the clams feed. Mortality due to extreme weather conditions is unlikely because the decline has been gradual. With this decline, *Corbicula fluminea* is no longer a biomass-dominant component of the benthic community in the tidal freshwater Potomac River.

Table 3-1. Summer trends in benthic community condition, 1985-2015. Trends were identified using the van Belle and Hughes (1984) procedure. Current mean B-IBI and condition are based on 2013-2015 values. Initial mean B-IBI and condition are based on 1985-1987 values, except where noted. NS: not significant; (a): 1989-1991 initial condition; (b): 1995-1997 initial condition. Shaded areas highlight changes in condition or trend direction over those reported for 2014.

Station	Trend Significance	Median Slope (B-IBI units/yr)	Current Condition (2013-2015)	Initial Condition (1985-1987 unless otherwise noted)					
Potomac River									
36	p < 0.001	-0.04	2.11 (Degraded)	3.14 (Meets Goal)					
40	NS	0.00	2.81 (Marginal)	2.80 (Marginal)					
43	p < 0.01	-0.00	3.18 (Meets Goal)	3.76 (Meets Goal)					
44	p < 0.1	-0.00	2.87 (Marginal)	2.80 (Marginal)					
47	NS	0.00	3.67 (Meets Goal)	3.89 (Meets Goal)					
51	NS	0.00	3.00 (Meets Goal)	2.43 (Degraded)					
52	NS	0.00	1.11 (Severely Degraded)	1.37 (Severely Degraded)					
Patuxent River									
71	p < 0.001	-0.03	1.81 (Severely Degraded)	2.52 (Degraded)					
74	NS	0.00	3.58 (Meets Goal)	3.78 (Meets Goal)					
77	p < 0.01	-0.03	2.60 (Degraded)	3.76 (Meets Goal)					
79	NS	0.00	3.06 (Meets Goal)	2.75 (Marginal)					
			Choptank River						
64	p < 0.05	0.02	3.26 (Meets Goal)	2.78 (Marginal)					
66	NS	0.00	2.69 (Marginal)	2.60 (Degraded)					
		Μ	aryland Mainstem						
01	NS	0.00	3.04 (Meets Goal)	2.93 (Marginal)					
06	NS	0.00	3.00 (Meets Goal)	2.56 (Degraded)					
15	NS	0.00	2.22 (Degraded)	2.22 (Degraded)					
24	NS	0.00	3.89 (Meets Goal)	3.04 (Meets Goal)					
26	p < 0.01	0.00	3.40 (Meets Goal)	3.16 (Meets Goal)					
		Maryland	Western Shore Tributaries						
22	p < 0.001	-0.04	1.40 (Severely Degraded)	2.08 (Degraded)					
23	NS	0.00	2.02 (Degraded)	2.49 (Degraded)					
201	p < 0.05	0.00	2.16 (Degraded)	1.10 (Severely Degraded) (a)					
202	p < 0.01	-0.00	1.09 (Severely Degraded)	1.40 (Severely Degraded) (a)					
203	p < 0.001	0.06	3.15 (Meets Goal)	2.08 (Degraded) (b)					
204	NS	0.00	3.52 (Meets Goal)	3.67 (Meets Goal) (b)					
Maryland Eastern Shore Tributaries									
29	NS	0.00	2.74 (Marginal)	2.38 (Degraded)					
62	p < 0.001	-0.04	2.38 (Degraded)	3.42 (Meets Goal)					
68	NS	0.00	3.13 (Meets Goal)	3.51 (Meets Goal)					

Station	B-IBI	Abundance	Biomass	Shannon Diversity	Indicative Abundance	Sensitive Abundance	Indicative Biomass (c)	Sensitive Biomass (c)	Abundance Carnivore/ Omnivores
				Potoma	ic River				
43	↓ * * *	↓ * * *	↓ * * *		1 ***	↓ *** (d)	NA	↓ ***	NA
44	↓ *	↓ * * *	↓ * * *		↓ **	↓ *** (d)	NA	↓ *	NA
47		↓ * * *	↓ * * *		1 **	↓ *** (d)	NA	↓ ***	NA
51		↓ * * *	↓ * * *		↓ ***		NA	↓ ***	1 * *
52		↓ * * *	↓ * * *	↓ * * *	(d)	(d)			
				Patuxer	nt River				
71	↓ * * *	↓ * * *	↓ * * *	↓ * * *	(d)	↓ * (d)			
74			↓ * * *			↓ *** (d)	NA	↓ ***	NA
77	↓ * * *		↓ * * *		↑ * * *	↓ * (d)	NA		NA
				Choptar	nk River				
64	↑ **				↓ * (d)	î *** (d)			
				Maryland	Mainstem				
01		↓ * * *	↓ * * *		↓ * *		NA	NA	
06							NA	NA	
15					↓ * *		NA	NA	
24				↓ * * *	↓ * * * (d)	î ** (d)	↓ **		↑ * * *
26	1 ***		↓ * *			(d)	NA	↓ ***	NA
			IV	laryland Western	Shore Tributaries	3			
22	↓ * * *	↓ * * *	↓ * * *	↓ * * *	1 * * *	(d)	NA	₩ ***	NA
23		↓ * * *		↓ * *		î *** (d)	NA		NA
201(a)	↑ **		1 *			î *(d)	NA	↑ *	NA
202(a)	↓ * * *	↓ * * *				(d)	NA		NA
204(b)		↓ *			(d)	(d)			
			Ν	laryland Eastern	Shore Tributaries				
62	↓ * * *	↑ * * *	↓ * *	↓ * * *		↓ *** (d)	NA	↓ *	NA
68			↑ * * *	↓ *		(d)	NA		NA

Station	B-IBI	Abundance	Tolerance Score	Freshwater Indicative Abundance	Oligohaline Indicative Abundance	Oligohaline Sensitive Abundance	Tanypodinae to Chironomidae Ratio	Abundance Deep Deposit Feeders	Abundance Carnivore/ Omnivores	
					Potomac River					
36	↓ * * *	↑ * * *	↑ * * *	↑ * * *	NA	NA	NA	↑ * * *	NA	
40		1 *	↓ * * *	NA			↓ * * *	NA		
	Patuxent River									
79					NA	NA	NA		NA	
					Choptank River					
66			↑ ***	NA	↑ * *			NA		
				Maryland \	Western Shore Trik	outaries				
203(a)	↑ * * *			NA				NA	1 * * *	
				Maryland	Eastern Shore Trib	utaries				
29				NA		↑ *		NA	↑ * * *	

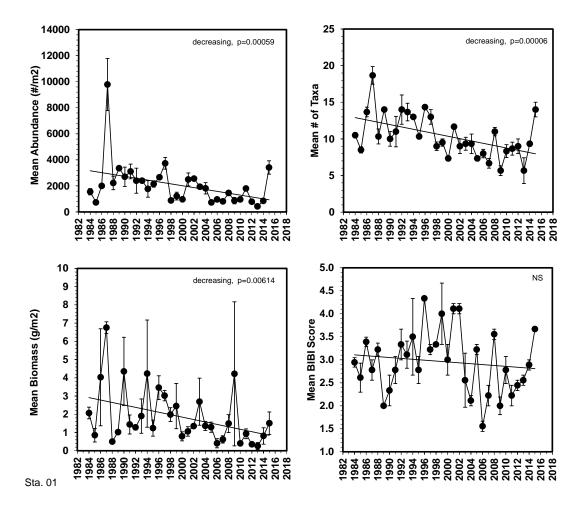


Figure 3-1. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 01 = Chesapeake Bay mainstem (\leq 5 m) at Calvert Cliffs

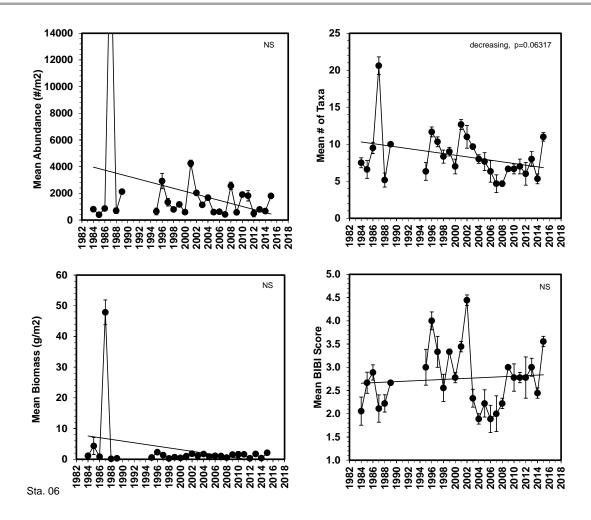


Figure 3-2. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 06 = Chesapeake mainstem (\leq 5 m) at Calvert Cliffs

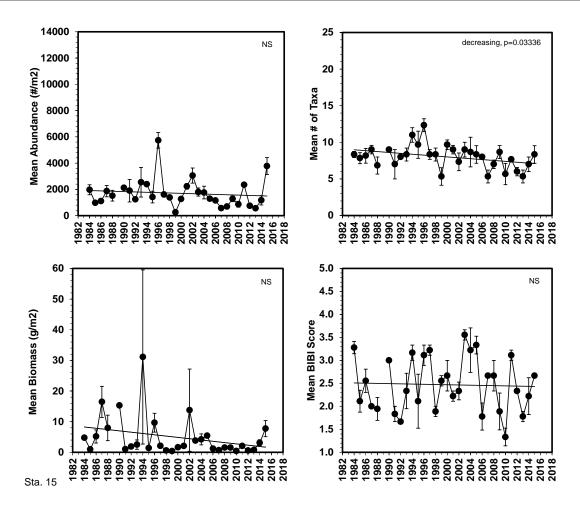


Figure 3-3. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 15 = Chesapeake mainstem (\leq 5 m), North Beach

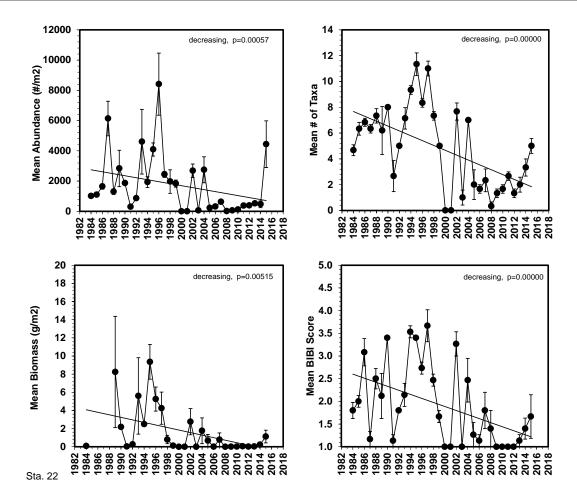


Figure 3-4. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 22 = Patapsco River estuary (2-6 m), Middle Branch

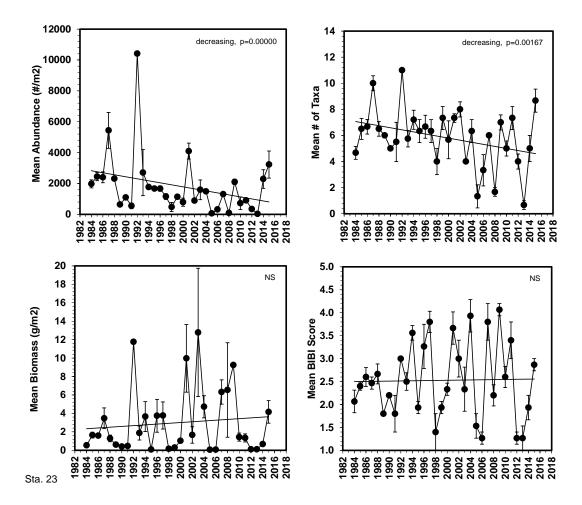


Figure 3-5. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 23 = Patapsco River estuary (4-7 m), lower mainstem

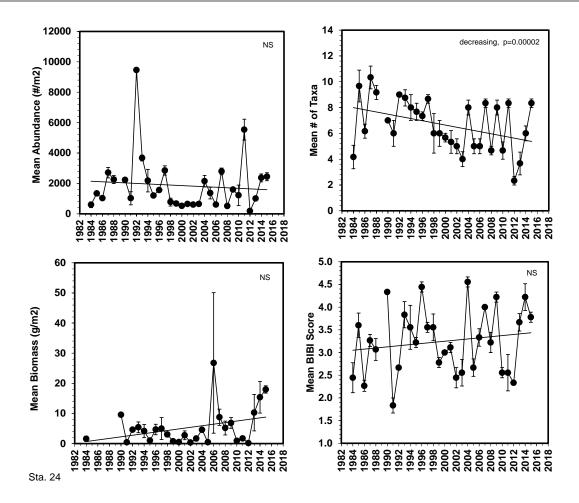


Figure 3-6. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 24 = Chesapeake Bay mainstem (5-8 m), near the mouth of the Patapsco River

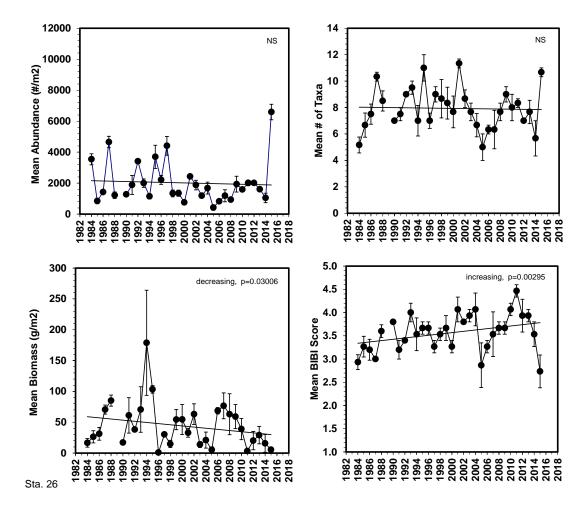


Figure 3-7. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 26 = Chesapeake Bay mainstem (2-5 m), Pooles Island

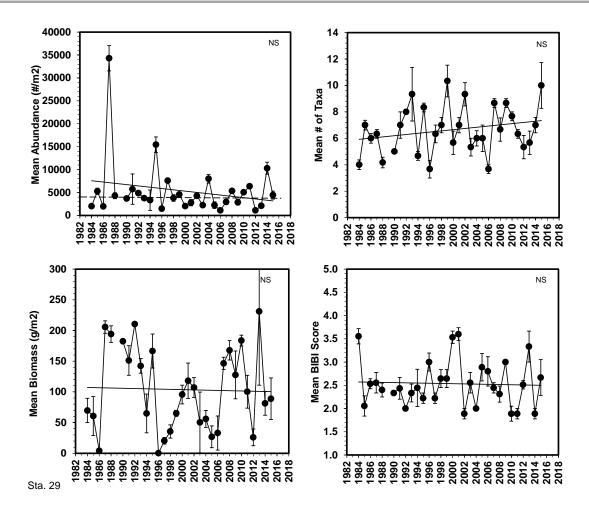


Figure 3-8. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 29 = Elk River. The dashed line in the abundance plot is the upper B-IBI threshold (scored as 1) for abundance

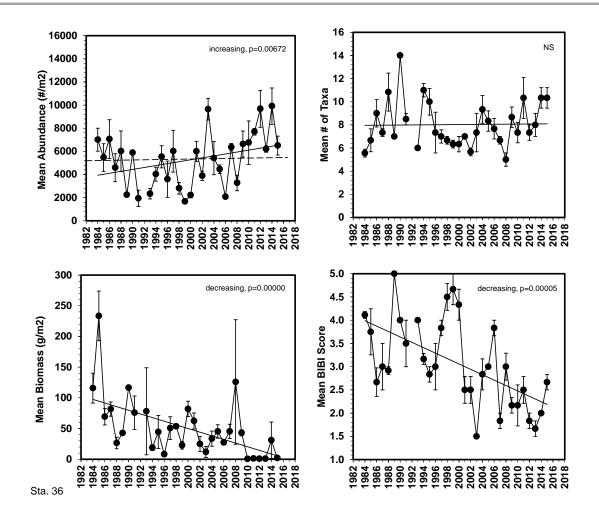


Figure 3-9. Trends in abundance, biomass, number of species, and B-IBI (mean ± 1 SE) at fixed sites. Station 36 = Tidal freshwater Potomac River (≤5 m) at Rosier Bluff. The dashed line in the abundance plot is the upper B-IBI threshold (scored as 1) for abundance

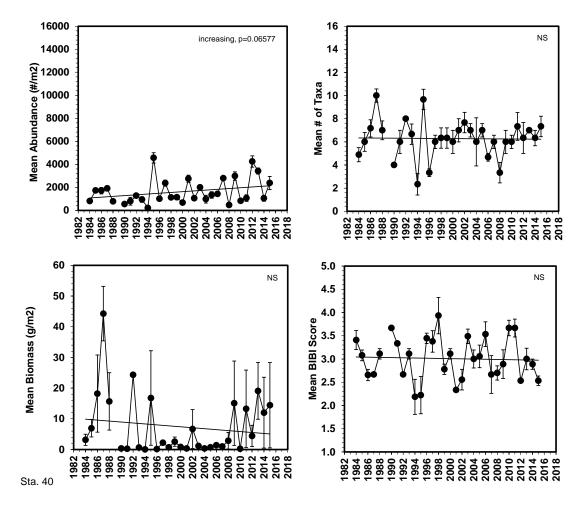


Figure 3-10. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 40 = Oligohaline Potomac River (6-10 m) at Maryland Point

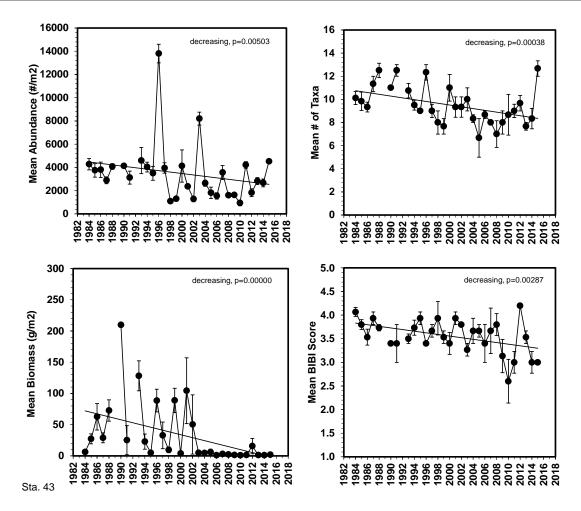


Figure 3-11. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 43 = Shallow mesohaline Potomac River (\leq 5 m) at Morgantown

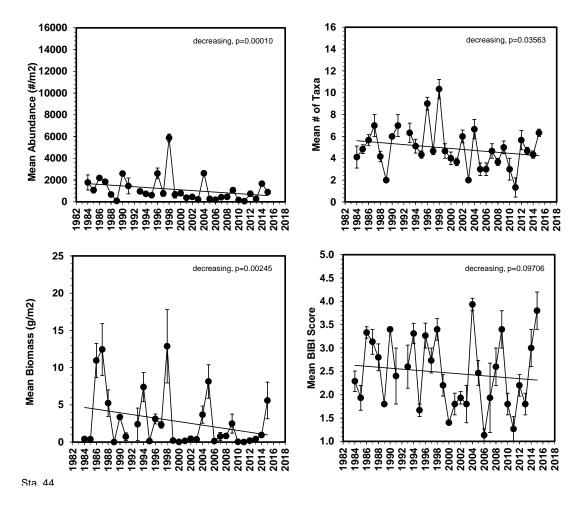


Figure 3-12. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 44 = Deep mesohaline Potomac River (11-17 m) at Morgantown

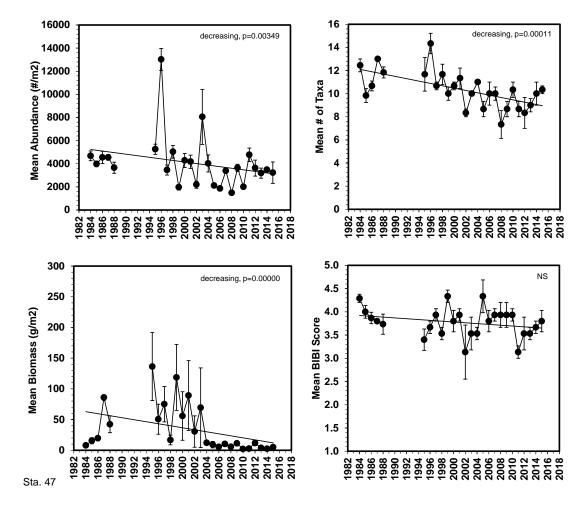


Figure 3-13. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 47 = Shallow mesohaline Potomac River (\leq 5 m) at Morgantown

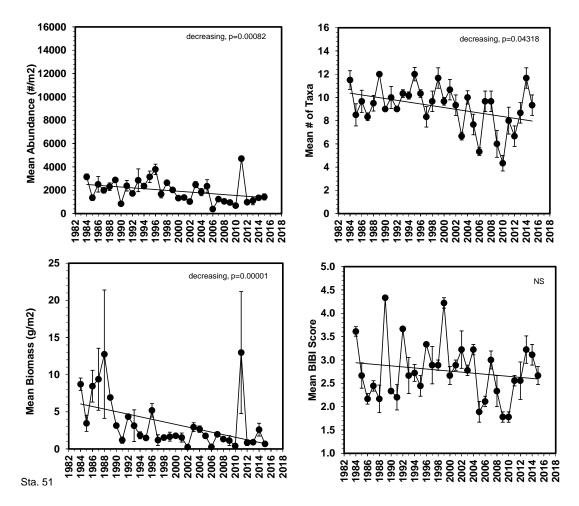


Figure 3-14. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 51 = Shallow mesohaline Potomac River (\leq 5 m), St. Clements Island

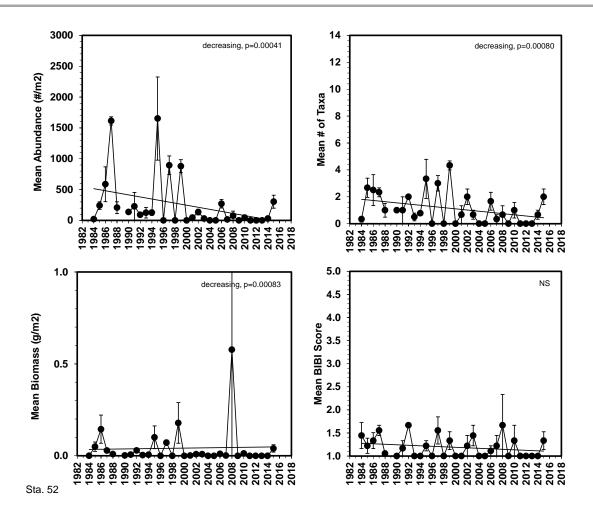


Figure 3-15. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 52 = Deep mesohaline Potomac River (9-13 m), St. Clements Island

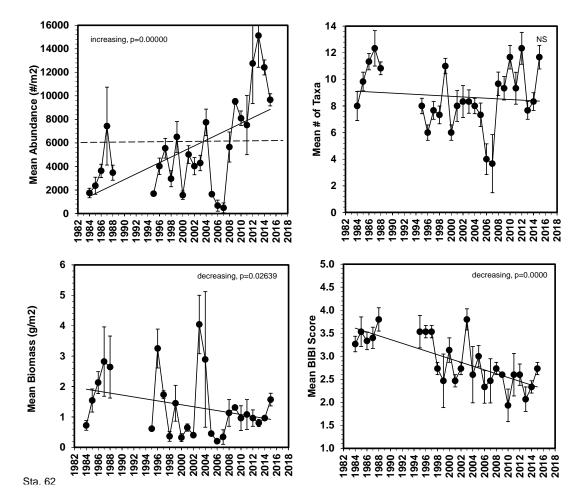


Figure 3-16. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 62 = Nanticoke River. The dashed line in the abundance plot is the upper B-IBI threshold (scored as 1) for abundance

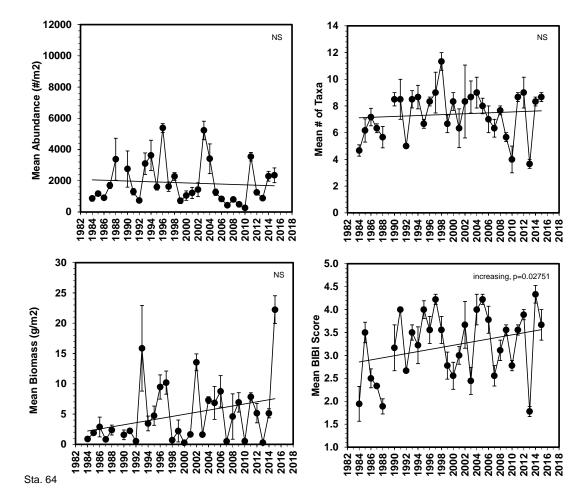


Figure 3-17. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 64 = Mesohaline Choptank River

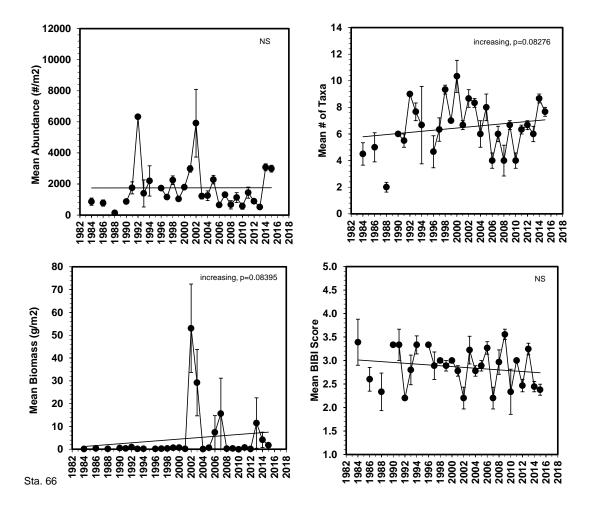


Figure 3-18. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 66 = Oligohaline Choptank River

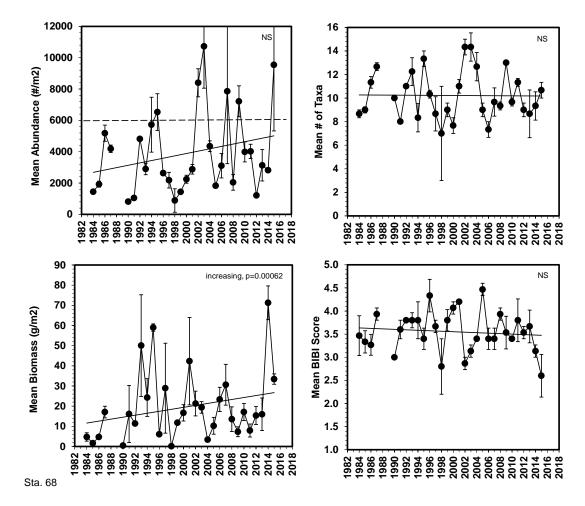


Figure 3-19. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 68 = Chester River. The dashed line in the abundance plot is the upper B-IBI threshold (scored as 1) for abundance

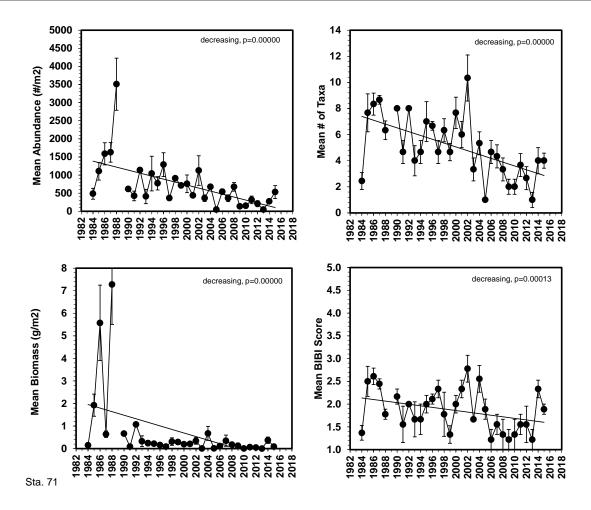


Figure 3-20. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 71 = Mesohaline Patuxent River (12-18 m), Broomes Island

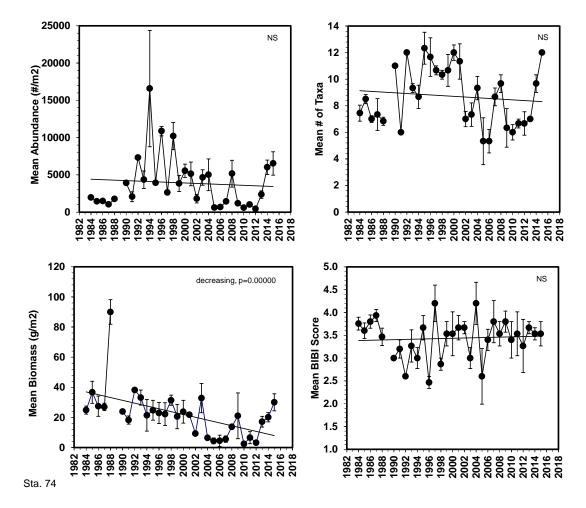


Figure 3-21. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 74 = Mesohaline Patuxent River (\leq 5 m), Chalk Point

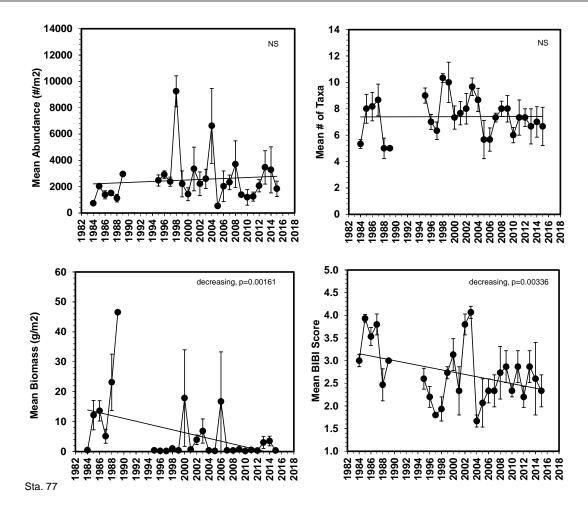


Figure 3-22. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 77 = Mesohaline Patuxent River (\leq 5 m), Holland Cliff

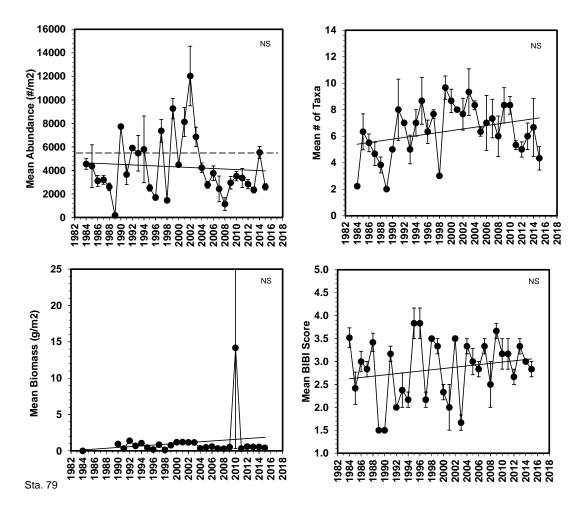


Figure 3-23. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 79 = Tidal freshwater Patuxent River (\leq 6 m), Lyons Creek. The dashed line in the abundance plot is the upper B-IBI threshold (scored as 1) for abundance

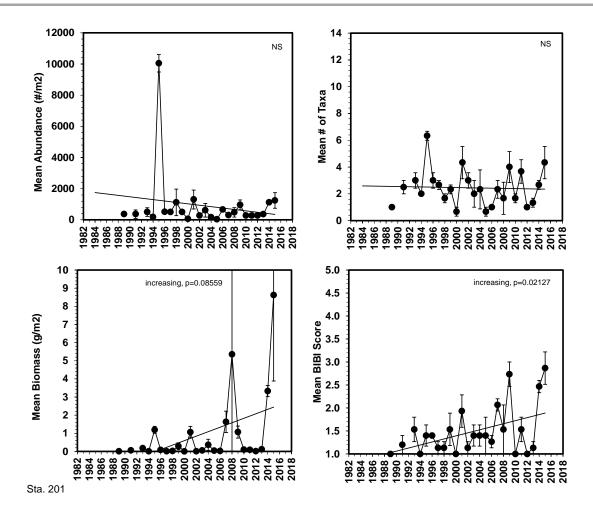


Figure 3-24. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 201 = Patapsco River estuary, Bear Creek

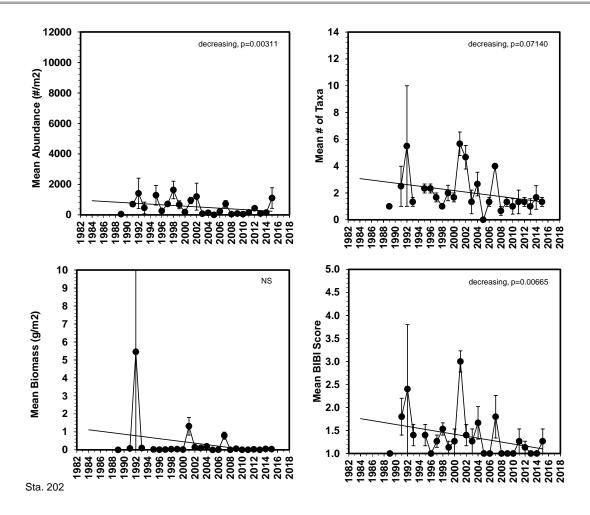


Figure 3-25. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 202 = Patapsco River estuary, Curtis Creek

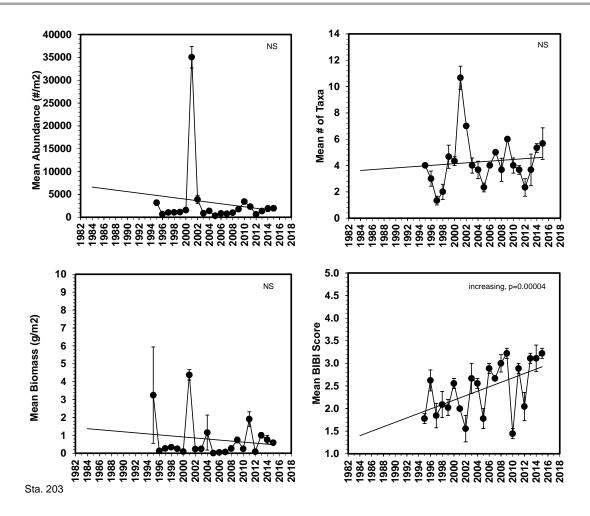


Figure 3-26. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 203 = Back River. Note change in scale in abundance compared to Stations 201, 202, and 204

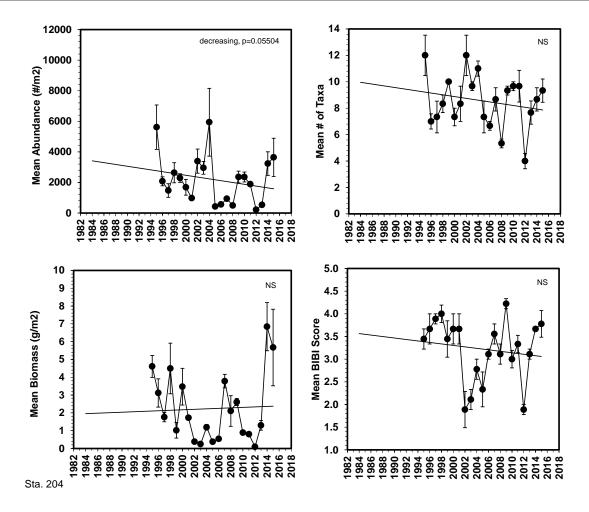


Figure 3-27. Trends in abundance, biomass, number of species, and B-IBI (mean \pm 1 SE) at fixed sites. Station 204 = Severn River

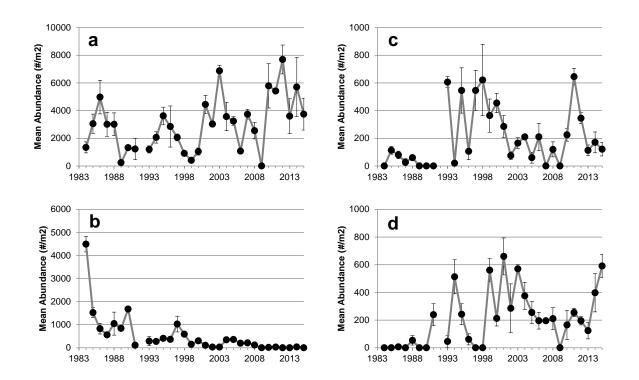


Figure 3-28. Trends in abundance (mean ± 1 SE) of four numerically dominant species in the tidal freshwater Potomac River at Station 36, 1984-2015. (a) *Limnodrilus hoffmeisteri*, a tubificid oligochaete worm; (b) *Corbicula fluminea*, a bivalve; (c) *Coelotanypus* spp., a midge larva; and (d) *Branchiura sowerbyi*, another tubificid oligochaete worm.

3.2 BAYWIDE BOTTOM COMMUNITY CONDITION

The fixed site monitoring provides useful information about trends in the benthic community condition at 27 locations in the Maryland Chesapeake Bay but it does not provide an integrated assessment of the Bay's overall condition. The fixed sites were selected for trend monitoring because they are located in areas subject to management action and, therefore, are likely to undergo change. Because these sites were selected subjectively, there is no objective way of weighting them to obtain an unbiased estimate of Maryland baywide status.

An alternative approach for quantifying status of the bay, which was first adopted in the 1994 sampling program, is to use probability-based sampling to estimate the bottom area populated by benthos meeting the Chesapeake Bay benthic community restoration goals. Where the fixed site approach quantifies change at selected locations, the probability sampling approach quantifies the spatial extent of problems. While both approaches are valuable, developing and assessing the effectiveness of a Chesapeake Bay management strategy requires understanding the extent and distribution of problems throughout the Bay, instead of only assessing site-specific problems. Our probability-based sampling element is intended to provide that information, as well as a more widespread baseline data set for assessing the effects of unanticipated future contamination (e.g., oil or hazardous waste spills). Probability-based sampling information is used annually in the Bay Report Card and for Chesapeake Bay aquatic life use support decisions under the Clean Water Act (Llansó et al. 2005, 2009a).

Probability-based sampling was employed prior to 1994 by LTB, but the sampled area included only 16% of the Maryland Chesapeake Bay (Ranasinghe et al. 1994) which was insufficient to characterize the entire Bay. Probability-based sampling was also used in the Maryland Bay by the U.S. EPA Environmental Monitoring and Assessment Program (EMAP), and most recently by the U.S. EPA National Coastal Condition Assessment, but at a sampling density too low to develop precise condition estimates for the Maryland Bay. The 2015 sampling continues with efforts initiated in 1994 to develop area-based bottom condition statements for the Maryland Bay.

Estimates of tidal bottom area meeting the benthic community restoration goals are included for the entire Chesapeake Bay. The estimates were enabled by including a probability-based sampling element in the Virginia Benthic Monitoring Program starting in 1996. The Virginia sampling is compatible and complementary to the Maryland effort and is part of a joint effort by the two programs to assess the extent of "healthy" tidal bottom baywide.

This section presents the results of the 2015 Maryland and Virginia probabilitybased sampling and provides twenty-two years (1994-2015) of benthic community monitoring in tidal waters of the Maryland Chesapeake Bay. The analytical methods for estimating the areal extent of bay bottom meeting the restoration goals were presented in Section 2.0. The physical data associated with the benthic samples (bottom water

salinity, temperature, dissolved oxygen, and sediment silt-clay and organic carbon content) can be found in the Appendices Section of this report (Volume 2). Only summer data (July 15-September 30) are used for the probability-based assessments.

Of the 150 Maryland samples collected with the probability-based design in 2015, 80 met and 70 failed the Chesapeake Bay benthic community restoration goals (Figure 3-29), an increase in the number of samples meeting the goals relative to 2014. Of the 250 probability samples collected in the entire Chesapeake Bay in 2015, 139 met and 111 failed the restoration goals. The Virginia sampling results are presented in Figure 3-30. In terms of number of sites meeting the goals in Chesapeake Bay (Maryland plus Virginia), more sites met the goals in 2015 (56%) than in 2014 (50%) and 2013 (42%).

The area with degraded benthos in the Maryland Bay decreased in 2015 (Maryland Tidal Waters, Figure 3-31 left panel), and the magnitude of the severely degraded condition also decreased (Maryland Tidal Waters, Figure 3-31 right panel). Results from the individual sites were weighted based on the area of the stratum represented by the site in the stratified sampling design to estimate the tidal Maryland area failing the restoration goals. In 2015, 53% ($\pm 4.7\%$ SE) of the Maryland Bay was estimated to fail the restoration goals (Figure 3-31). In 2014 and 2013 the estimates were 60% ($\pm 4.8\%$ SE) and 64% ($\pm 4.6\%$ SE), respectively. Expressed as area, 3,322 \pm 291 km² of the Maryland tidal waters in Chesapeake Bay remained to be restored in 2015 (Table 3-4). A statistically significant increasing trend in percent area degraded over the 1995-2014 time series disappeared with the addition of the 2015 data (ANOVA: F=0.88, p=0.3591).

In 2015, the Potomac River and the Maryland Mainstem were among the Maryland strata in poorest condition (Figures 3-32 and 3-34). The Patuxent River exhibited a large decrease in degradation to 48% from 72% in 2014 (Figure 3-32). However, this decrease may reflect in part the random sampling of a higher proportion of shallow, sandy sites in the Patuxent River in 2015 compared to the preceding year. The Maryland Mainstem also exhibited a decrease in percent area degraded to 53% from 65% in 2014 (Figures 3-32). The estimate for the Maryland Mainstem includes the mid-bay deep trough, which is perennially hypoxic and accounts for 21% of the area of the stratum.

Over the 1995-2015 time series, more than half of the mid-bay mainstem (1,697-2,718 km²) and the tidal Potomac River (714-1,173 km²) (Table 3-4) failed the restoration goals each year, and a large portion of that area, ranging from 52% to 85% in the mainstem and 46% to 93% in the Potomac River, was severely degraded. In 2015, 50% of the Potomac River bottom failing the restoration goals was severely degraded. This estimate reflects a decrease in the severely degraded condition relative to recent years (but was not a statistically significant trend). Over the same time series, a statistically significant increasing trend in percent area degraded was detected in the Patuxent River (ANOVA: F=9.92, p=0.0053), but not in the Maryland Mainstem (last year's degrading trend disappeared). Significant increasing trends in percent area severely degraded were detected in the Patuxent River (ANOVA: F=4.96, p=0.0382) and the Maryland Eastern Tributaries (ANOVA: F=3.34, p=0.0836).

In Virginia, the Rappahannock River and James River exhibited decreases in percent area degraded, the Virginia Mainstem exhibited a small increase, and the York River exhibited no change (Table 3-4, Figure 3-33). The same pattern was observed for the severely degraded condition. Degrading trends in the Rappahannock River and James River over the 1996-2014 time series disappeared with the addition of the 2015 data. The Virginia Mainstem exhibited a significant decreasing trend in percent area degraded (ANOVA: F = 11.50, p = 0.0033), and overall Virginia tidal waters also exhibited a decreasing trend in degradation (ANOVA: F = 5.88, p = 0.0261).

For the Chesapeake Bay, the estimate of degradation in 2015 was the lowest observed since baywide monitoring began in 1996 (Figure 3-31), lower by three percentage points than in 2014. Also, the severely degraded condition was the lowest of the time series. Weighting results from the 250 probability sites in Maryland and Virginia, $38\% (\pm 3.5\%)$ or $4,428\pm408 \text{ km}^2$ of the tidal Chesapeake Bay was estimated to fail the restoration goals in 2015, and 59% of that area (2,594 km²) was severely degraded (Table 3-4). There was no statistically significant change in percent area degraded over the time series (ANOVA: F = 1.05, p = 0.3187).

River flow into the Chesapeake Bay in 2015 was very low through early March, increased above the normal range of streamflow in April, and decreased again through mid June (Figure 3-35). Susquehanna River flow at Conowingo exceeded 100,000 cfs per day during rain events in April, but otherwise variability in spring flow was moderate (SD = 33,000 cfs) compared to other years (SD = 76,162 cfs in 2011-16,608 cfs in 2013). Hypoxic volume in 2015 was below average through most of the summer, only increasing above the long-term average in early August (Figure 3-36). More importantly, hypoxic volume was very low in early June, a sensitive period in the recruitment and growth of benthic populations. Most of the hypoxia in Chesapeake Bay occurred in the mid-bay mainstem. The low hypoxic volume in Chesapeake Bay in 2015 was likely the result of overall low spring flows and nutrient runoff into the bay.

Abundance, number of species, and the biomass of benthos increased significantly in Maryland tidal waters and the Chesapeake Bay in 2015 (Figures 3-37 and 3-38), and the number of sites scoring "1" (below restorative thresholds) for abundance and biomass decreased. The mean B-IBI score increased (Figure 3-37). Degrading trends in mean B-IBI score and percentage of sites scoring "1" for low biomass disappeared in 2015, and the magnitude of a declining trend in number of species in Maryland (ANOVA, F=3.17, p=0.0911) decreased. Most of the improvements in benthic community attributes occurred in the Maryland portion of the Chesapeake Bay, with little or no improvement observed in Virginia sampling strata.

In addition to percent area degraded, results can be summarized by the type of stress experienced by the benthic communities. Low abundance, low biomass, and the level of widespread failure in most metrics necessary to classify a site as severely degraded is usually expected on exposure to catastrophic events such as prolonged

dissolved oxygen stress. Conversely, excess abundance and excess biomass are phenomena usually associated with eutrophic conditions and organic enrichment of the sediment in the absence of low dissolved oxygen stress. For the period 1996-2015, four strata (Potomac River, Patuxent River, Mid Bay Mainstem, and Maryland Western Tributaries) had a large percentage (>69%) of sites failing the goals because of insufficient abundance or biomass of organisms relative to reference conditions (Table 3-5), and were the most dissolved-oxygen stressed. These strata also had a high percentage (>60%) of failing sites classified as severely degraded (Table 3-5). These results contrast with those of the James River, York River, and Maryland Eastern Tributaries, which had fewer depauperate sites but excess abundance, excess biomass, or both in >20% of the failing sites (Table 3-6).

Table 3-4. Estimated tidal area (km ²) failing to meet the Chesapeake Bay benthic community restoration goals in the Chesapeake Bay, Maryland, Virginia, and each of the 10 sampling strata. In this table, the area of the mainstem deep trough is included in the estimates for the severely degraded portion of Chesapeake Bay, Maryland tidal waters, and Maryland mid-bay mainstem. Note that the total area of the Potomac River sampled in 1994 differs from the total area sampled after 1994 (see Tables 2-2 and 2-3).										
Severely Total										
Region	Year	Degraded	Degraded	Marginal	Failing	% Failing				
Chesapeake Bay	1996	3,080	1,388	1,056	5,524	47.6				
	1997	2,941	2,093	856	5,890	50.7				
	1998	3,771	1,689	1,271	6,731	58.0				
	1999	3,164	1,660	1,020	5,844	50.3				
	2000	2,704	1,538	1,474	5,715	49.2				
	2001	3,123	1,187	1,749	6,060	52.2				
	2002	3,424	1,584	1,170	6,178	53.2				
	2003	3,351	2,537	964	6,852	59.0				
	2004	2,902	1,940	650	5,492	47.3				
	2005	4,664	1,550	614	6,829	58.8				
	2006	4,336	1,779	756	6,871	59.2				
	2007	4,120	1,529	1,064	6,713	57.8				
	2008	3,459	1,570	1,759	6,788	58.5				
	2009	3,164	898	1,032	5,094	43.9				
	2010	3,199	1,492	1,485	6,177	53.2				
	2011	3,686	1,534	1,132	6,353	54.7				
	2012	3,125	2,039	1,173	6,337	54.6				
	2013	3,650	1,760	800	6,210	53.5				
	2014	2,601	1,660	505	4,767	41.1				
	2015	2,595	1,485	349	4,428	38.2				
Maryland Tidal	1994	2,684	1,152	497	4,332	66.5				
Waters	1995	2,872	605	182	3,659	58.6				
	1996	2,614	700	155	3,469	55.6				
	1997	2,349	719	462	3,529	56.5				
	1998	2,663	1,016	623	4,302	68.9				
	1999	2,423	1,137	374	3,935	63.0				
	2000	2,455	1,137	236	3,828	61.3				
	2001	2,313	582	644	3,538	56.7				
	2002	2,444	713	928	4,086	65.4				
	2003	2,571	1,288	228	4,086	65.4				
	2004	2,037	985	226	3,248	52.0				
	2005	2,771	1,014	295	4,080	65.3				
	2006	3,077	1,013	504	4,595	73.6				
	2007	3,088	851	513	4,452	71.3				
	2008	2,727	767	854	4,348	69.6				
	2009	2,484	580	540	3,605	57.7				
	2010	2,656	1,171	355	4,182	67.0				
	2011	2,320	1,027	703	4,050	64.9				
	2012	2,620	1,161	785	4,565	73.1				
	2013	2,549	1,269	184	4,001	64.1				
	2014	2,110	1,402	241	3,753	60.1				
	2015	1,997	1,071	254	3,322	53.2				

		Severely			Total	
Region	Year	Degraded	Degraded	Marginal	Failing	% Failing
Virginia Tidal	1996	466	688	901	2,055	38.3
Waters	1997	592	1,375	394	2,361	44.0
	1998	1,107	673	648	2,429	45.3
	1999	741	523	646	1,909	35.6
	2000	249	401	1,238	1,888	35.2
	2001	810	606	1,106	2,522	47.0
	2002	980	871	242	2,092	39.0
	2003	780	1,249	736	2,766	51.6
	2004	866	955	424	2,245	41.9
	2005	1,893	536	319	2,748	51.2
	2006	1,259	765	252	2,276	42.4
	2007	1,031	678	552	2,261	42.2
	2008	732	803	905	2,440	45.5
	2009	680	318	491	1,489	27.8
	2010	543	321	1,130	1,994	37.2
	2011	1,366	508	429	2,303	42.9
	2012	505	878	389	1,772	33.0
	2013	1,101	491	616	2,208	41.2
	2014	490	259	264	1,013	18.9
	2015	598	413	95	1,106	20.6
Maryland Eastern	1995	107	128	0	235	44.0
Tributaries	1996	21	150	21	192	36.0
	1997	43	86	0	128	24.0
	1998	21	64	64	150	28.0
	1999	43	150	86	278	52.0
	2000	64	150	21	235	44.0
	2001	128	64	86	278	52.0
	2002	64	107	64	235	44.0
	2003	128	214	0	342	64.0
	2004	86	107	21	214	40.0
	2005	86	64	86	235	44.0
	2006	86	128	43	257	48.0
	2007	150	86	128	363	68.0
	2008	86	86	64	235	44.0
	2009	192	64	64	321	60.0
	2010	150	171	43	363	68.0
	2011	86	86	86	257	48.0
	2012	128	128	0	257	48.0
	2013	64	150	43	257	48.0
	2014	86	64	21	171	32.0
	2015	64	86	21	171	32.0

Region	Year	Severely Degraded	Degraded	Marginal	Total Failing	% Failing
Maryland Mid Bay	1995	1,799	204	102	2,106	65.2
Mainstem	1996	1,595	306	102	2,004	62.1
	1997	1,493	306	306	2,106	65.2
	1998	1,799	204	408	2,412	74.7
	1999	1,391	715	102	2,208	68.4
	2000	1,493	510	204	2,208	68.4
	2001	1,289	102	408	1,799	55.7
	2002	1,595	204	613	2,412	74.7
	2003	1,289	613	204	2,106	65.2
	2004	983	510	204	1,697	52.6
	2005	1,595	613	204	2,412	74.7
	2006	1,697	613	306	2,616	81.0
	2007	1,799	510	306	2,616	81.0
	2008	1,799	306	613	2,718	84.2
	2009	1,595	204	408	2,208	68.4
	2010	1,697	510	204	2,412	74.7
	2011	1,391	408	510	2,310	71.5
	2012	1,595	408	510	2,514	77.9
	2013	1,697	613	102	2,412	74.7
	2014	1,085	919	102	2,106	65.2
	2015	1,187	408	102	1,697	52.6
Maryland Upper	1995	345	63	0	408	52.0
Bay Mainstem	1996	126	126	31	283	36.0
	1997	126	94	31	251	32.0
	1998	157	188	31	377	48.0
	1999	188	63	63	314	40.0
	2000	94	126	0	220	28.0
	2001	157	31	31	220	28.0
	2002	94	126	31	251	32.0
	2003	188	157	0	345	44.0
	2004	220	31	0	251	32.0
	2005	31	0	0	31	4.0
	2006	188	31	31	251	32.0
	2007	188	31	0	220	28.0
	2008	126	188	94	408	52.0
	2009	31	31	63	126	16.0
	2010	157	31	31	220	28.0
	2011	94	126	0	220	28.0
	2012	126	157	31	314	40.0
	2013	94	157	0	251	32.0
	2014	94	63	94	251	32.0
	2015	94	63	63	220	28.0

Region	Year	Severely Degraded	Degraded	Marginal	Total Failing	% Failing
Maryland Upper	1995	58	47	23	129	44.0
Western Tributaries	1996	117	47	0	164	56.0
	1997	105	23	12	140	48.0
_	1998	94	23	12	129	44.0
-	1999	117	47	12	175	60.0
_	2000	140	70	0	211	72.0
_	2000	70	12	47	129	44.0
	2001	94	47	47	129	64.0
		47				
_	2003		105	23	175	60.0
_	2004	70	117	0	187	64.0
_	2005	140	47		187	64.0
_	2006	187	47	12	246	84.0
_	2007	94	35	12	140	48.0
_	2008	94	23	12	129	44.0
_	2009	94	35	0	129	44.0
_	2010	152	70	0	222	76.0
_	2011	35	70	0	105	36.0
	2012	199	23	23	246	84.0
	2013	70	23	23	117	40.0
_	2014	70	70	23	164	56.0
	2015	105	35	12	152	52.0
Patuxent River	1995	51	10	5	67	52.0
_	1996	41	20	0	61	48.0
_	1997	20	5	10	36	28.0
	1998	31	26	5	61	48.0
	1999	20	10	10	41	32.0
	2000	51	26	10	87	68.0
	2001	56	15	20	92	72.0
	2002	36	26	20	82	64.0
	2003	51	46	0	97	76.0
	2004	15	67	0	82	64.0
	2005	51	36	5	92	72.0
	2006	51	41	10	102	80.0
	2007	41	36	15	92	72.0
	2008	61	10	20	92	72.0
	2009	61	41	5	108	84.0
	2010	41	31	26	97	76.0
	2011	51	31	5	87	68.0
	2012	61	36	15	113	88.0
	2013	61	20	15	97	76.0
-	2014	61	31	0	92	72.0
	2015	36	20	5	61	48.0*

*low percent failing in 2015 may be in part due to the random sampling of a higher proportion of sandier sites compared to other years

Region	Year	Severely Degraded	Degraded	Marginal	Total Failing	% Failing
Potomac River	1994	793	330	0	1,123	60.7
	1995	510	153	51	714	56.0
	1996	714	51	0	765	60.0
	1997	561	204	102	867	68.0
	1998	561	510	102	1,173	92.0
	1999	663	153	102	918	72.0
	2000	612	255	0	867	68.0
	2001	612	357	51	1,020	80.0
	2002	561	204	153	918	72.0
	2003	867	153	0	1,020	80.0
	2004	663	153	0	816	64.0
	2005	867	255	0	1,122	88.0
	2006	867	153	102	1,122	88.0
	2007	816	153	51	1,020	80.0
	2008	561	153	51	765	60.0
	2009	510	204	0	714	56.0
	2010	459	357	51	867	68.0
	2011	663	306	102	1,071	84.0
	2012	510	408	204	1,122	88.0
	2013	561	306	0	867	68.0
	2014	714	255	0	969	76.0
	2015	510	459	51	1,020	80.0
Rappahannock	1996	119	60	0	179	48.0
River	1997	149	74	15	238	64.0
	1998	60	134	45	238	64.0
	1999	89	89	74	253	68.0
	2000	149	104	15	268	72.0
	2001	30	60	60	149	40.0
	2002	134	45	0	179	48.0
	2003	89	104	0	194	52.0
	2004	60	89	30	179	48.0
	2005	253	60	30	343	92.0
	2006	223	15	45	283	76.0
	2007	209	104	15	328	88.0
	2008	179	60	45	283	76.0
	2009	119	104	45	268	72.0
	2010	209	45	45	298	80.0
	2010	134	119	30	283	76.0
	2012	179	60	30	268	72.0
	2013	194	30	60	283	76.0
	2014	89	104	30	223	60.0
	2015	60	89	30	179	48.0

Table 3-4. (Conti	nued)					
Region	Year	Severely Degraded	Degraded	Marginal	Total Failing	% Failing
York River	1996	45	52	22	120	64.0
	1997	60	37	22	120	64.0
	1998	60	45	0	105	56.0
	1999	75	22	22	120	64.0
	2000	45	22	15	82	44.0
	2001	67	52	30	150	80.0
	2002	22	30	22	75	40.0
	2003	60	75	22	157	84.0
	2004	37	15	37	90	48.0
	2005	75	37	15	127	68.0
	2006	75	37	15	127	68.0
	2007	82	52	15	150	80.0
	2008	60	30	37	127	68.0
	2009	67	22	7	97	52.0
	2010	60	30	15	105	56.0
	2011	52	60	15	127	68.0
	2012	52	22	30	105	56.0
	2013	112	22	7	142	76.0
	2014	45	45	15	105	56.0
	2015	45	22	37	105	56.0
James River	1996	137	82	55	273	40.0
	1997	219	109	27	355	52.0
	1998	164	164	109	437	64.0
	1999	82	246	55	383	56.0
	2000	55	109	55	219	32.0
	2001	219	164	27	410	60.0
	2002	164	137	55	355	52.0
	2003	137	246	55	437	64.0
	2004	109	191	27	328	48.0
	2005	82	109	109	301	44.0
	2006	137	219	27	383	56.0
	2007	246	191	27	465	68.0
	2008	164	219	164	547	80.0
	2009	164	191	109	465	68.0
	2010	109	82	82	273	40.0
	2011	355	164	55	574	84.0
	2012	109	137	164	410	60.0
	2013	301	109	55	465	68.0
	2014	191	109	55	355	52.0
	2015	164	137	27	328	48.0

Table 3-4. (Continu	Table 3-4. (Continued)								
Region	Year	Severely Degraded	Degraded	Marginal	Total Failing	% Failing			
Virginia Mainstem	1996	165	494	824	1,483	36.0			
	1997	165	1,154	330	1,648	40.0			
	1998	824	330	494	1,648	40.0			
	1999	494	165	494	1,154	28.0			
	2000	0	165	1,154	1,318	32.0			
	2001	494	330	989	1,813	44.0			
	2002	659	659	165	1,483	36.0			
	2003	494	824	659	1,977	48.0			
	2004	659	659	330	1,648	40.0			
	2005	1,483	330	165	1,977	48.0			
	2006	824	494	165	1,483	36.0			
	2007	494	330	494	1,318	32.0			
	2008	330	494	659	1,483	36.0			
	2009	330	0	330	659	16.0			
	2010	165	165	989	1,318	32.0			
	2011	824	165	330	1,318	32.0			
	2012	165	659	165	989	24.0			
	2013	494	330	494	1,318	32.0			
	2014	165	0	165	330	8.0			
	2015	330	165	0	494	12.0			

Table 3-5.	Sites severe	ely degraded (B-	IBI≤2) and	failing the	restoration	n goals (scored a	at 1)
	for insuffici	ient abundance,	insufficie	ent biomas	s, or both	as a percentag	e of
	sites failing	the goals (B-IBI	<3), 199	6 to 2015.	Strata are	e listed in decrea	sing
	percent ord	er of sites with i	insufficier	nt abundan	e/biomass.		
					Sitos Failin	a the Goale Due t	0

	Sites Seve	erely Degraded	Sites Failing the Goals Due to Insufficient Abundance, Biomass, or Both		
Stratum	Number of Sites	As Percentage of Sites Failing the Goals	Number of Sites	As Percentage of Sites Failing the Goals	
Potomac River	252	67.6	310	83.1	
Patuxent River	176	53.8	270	82.6	
Mid Bay Mainstem	162	52.6	233	75.6	
Western Tributaries	179	62.8	197	69.1	
Upper Bay Mainstem	82	51.3	107	66.9	
Virginia Mainstem	58	35.6	102	62.6	
Rappahannock River	183	55.5	198	60.0	
Eastern Tributaries	83	35.9	120	51.9	
York River	160	51.3	109	34.9	
James River	121	42.6	70	24.6	

Table 3-6. Sites failing the restoration goals (scored at 1) for excess abundance, excess biomass, or both as a percentage of sites failing the goals (B-IBI < 3), 1996 to 2015. Strata are listed in decreasing percent order of sites with excess abundance/biomass.						
Stratum	Number of Sites	As Percentage of Sites Failing the Goals				
James River	109	38.4				
York River	75	24.0				
Eastern Tributaries	51	22.1				
Rappahannock River	66	20.0				
Upper Bay Mainstem	30	18.8				
Western Tributaries	49	17.2				
Mid Bay Mainstem	44	14.3				
Patuxent River	30	9.2				
Potomac River	34	9.1				
Virginia Mainstem	14	8.6				

Results

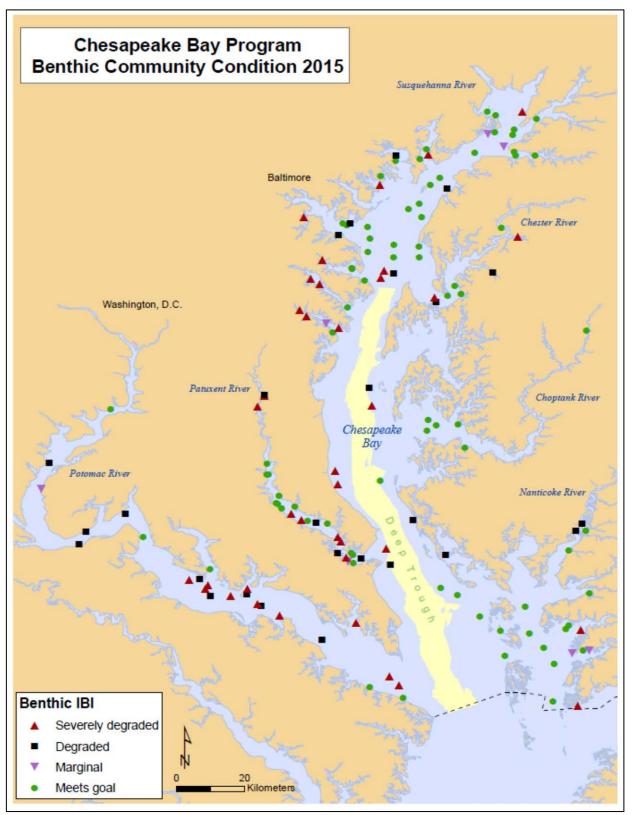


Figure 3-29. Results of probability-based benthic sampling of the Maryland Chesapeake Bay and its tidal tributaries in 2015. Each sample was evaluated in context of the Chesapeake Bay benthic community restoration goals

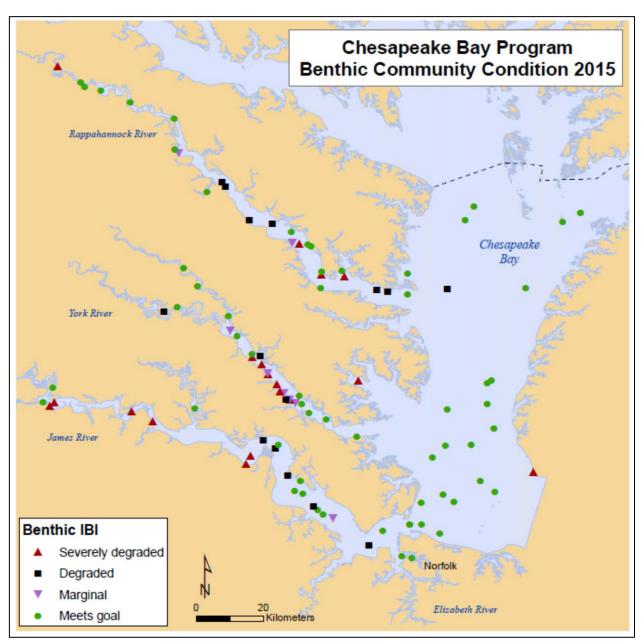


Figure 3-30. Results of probability-based benthic sampling of the Virginia Chesapeake Bay and its tidal tributaries in 2015. Each sample was evaluated in context of the Chesapeake Bay benthic community restoration goals

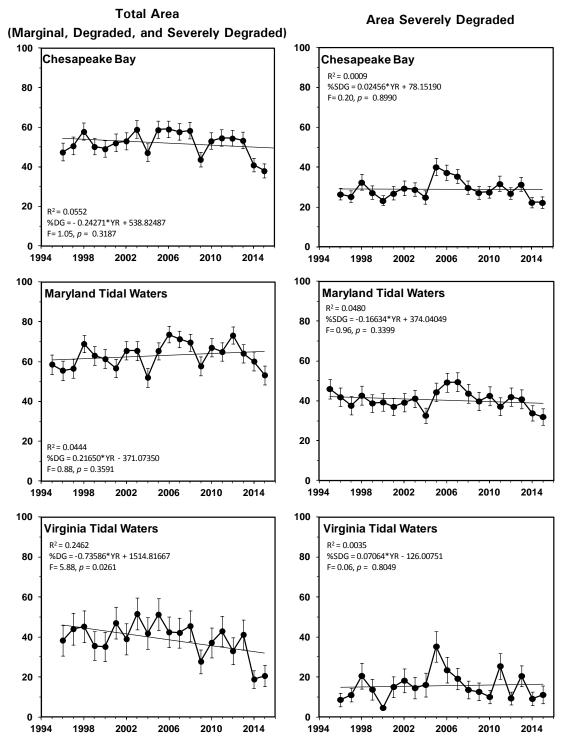


Figure 3-31. Proportion of the Chesapeake Bay, Maryland tidal waters, and Virginia tidal waters failing the Chesapeake Bay benthic community restoration goals, 1996 to 2015 (1995-2015 for Maryland). Panels on left show percent total area degraded (B-IBI<3.0); panels on right show percent area severely degraded (B-IBI≤2.0). Error bars indicate ± 1 SE. The mainstem deep trough is included in the severely degraded condition estimates</p>

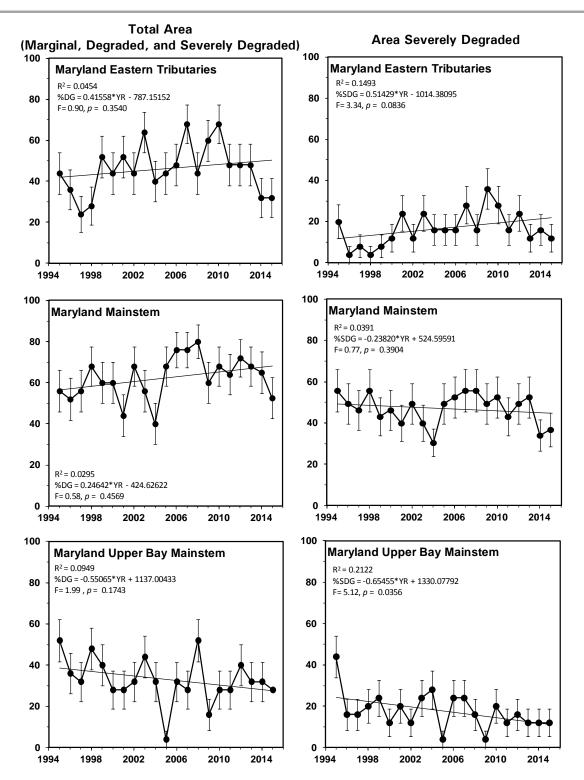


Figure 3-32. Proportion of the Maryland sampling strata failing the Chesapeake Bay benthic community restoration goals, 1995 to 2015. Panels on left show percent total area degraded (B-IBI < 3.0); panels on right show percent area severely degraded (B-IBI ≤ 2.0). Error bars indicate ± 1 SE. The deep trough is included in the Maryland mainstem stratum estimates

Results

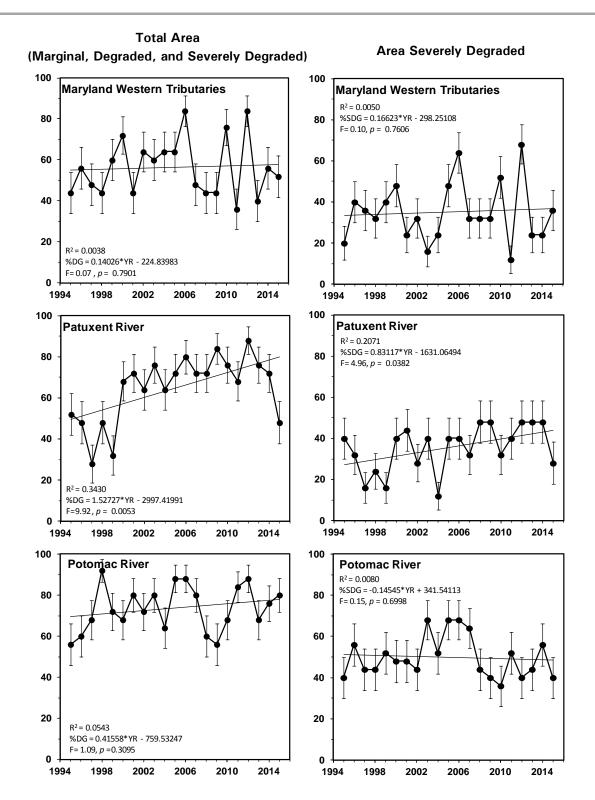


Figure 3-32. (Continued)

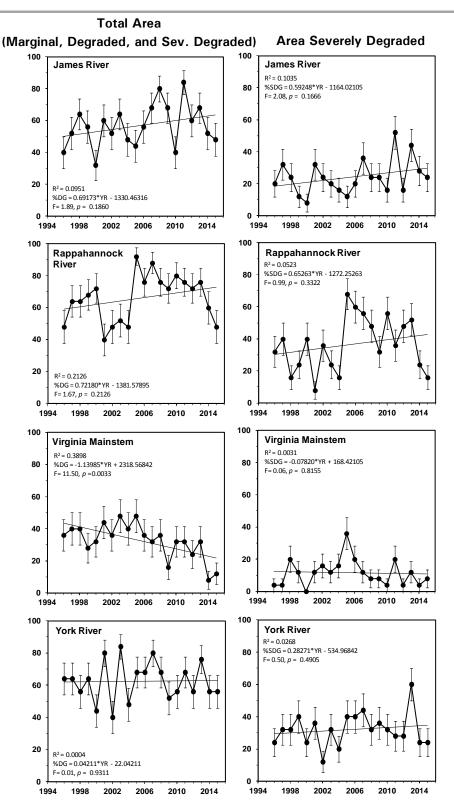


Figure 3-33. Proportion of the Virginia sampling strata failing the Chesapeake Bay benthic community restoration goals, 1996 to 2015. Panels on left show percent total area degraded (B-IBI < 3.0); panels on right show percent area severely degraded (B-IBI≤2.0). Error bars indicate ± 1 SE</p>

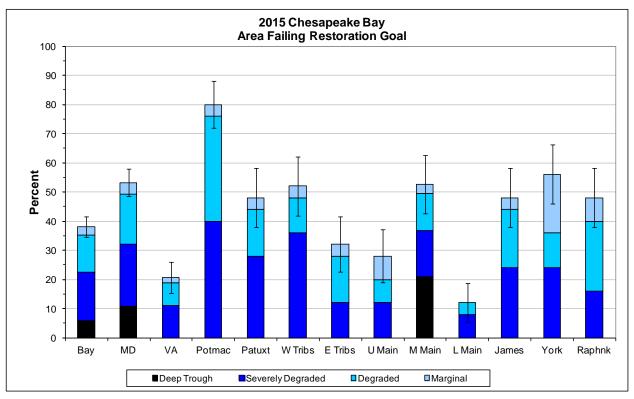


Figure 3-34. Proportion of the Chesapeake Bay, Maryland, Virginia, and the 10 sampling strata failing the Chesapeake Bay benthic community restorations goals in 2015. Error bars indicate ± 1 SE

Results

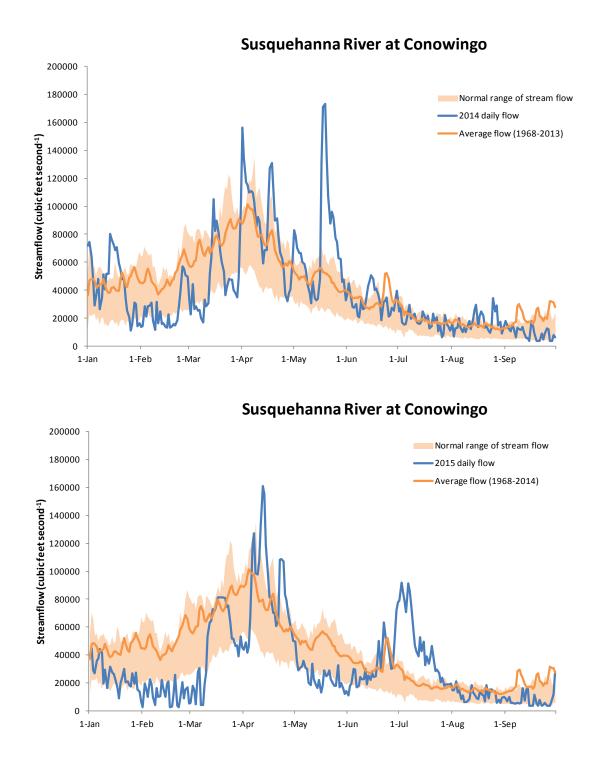


Figure 3-35. Daily flow entering the Chesapeake Bay from the Susquehanna River at Conowingo in 2014 (top panel) and 2015 (bottom panel), compared to the long-term average. Normal range of stream flow: 25%-75%. Data source: United States Geological Survey

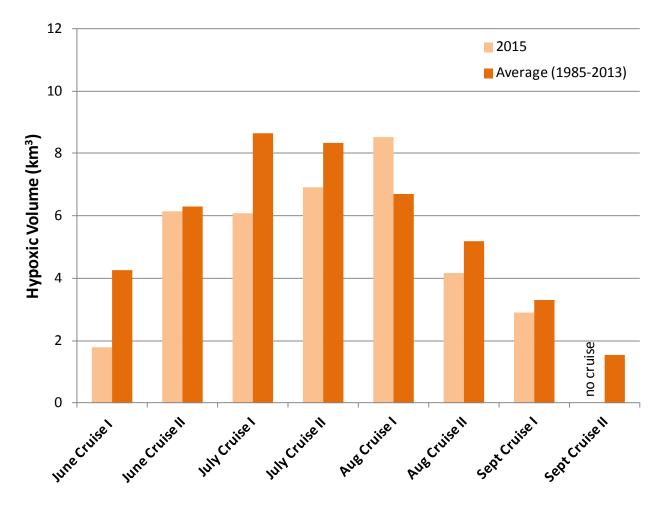


Figure 3-36. Hypoxic volume in Chesapeake Bay in 2015 compared to the long-term average. Source: Courtesy of Caroline Donovan, University of Maryland Center for Environmental Science (UMCES). Data provided by Maryland DNR and Virginia DEQ

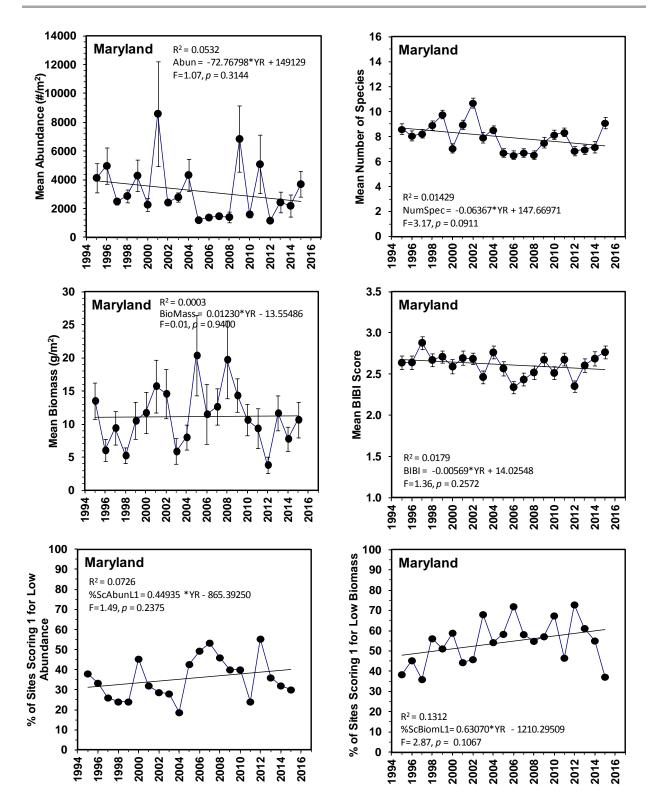


Figure 3-37. Trends in abundance, biomass, number of species, B-IBI (mean \pm 1 SE), and percent sites scoring "1" for low abundance or low biomass in Maryland tidal waters, 1995-2015 (N = 150 sites per year)

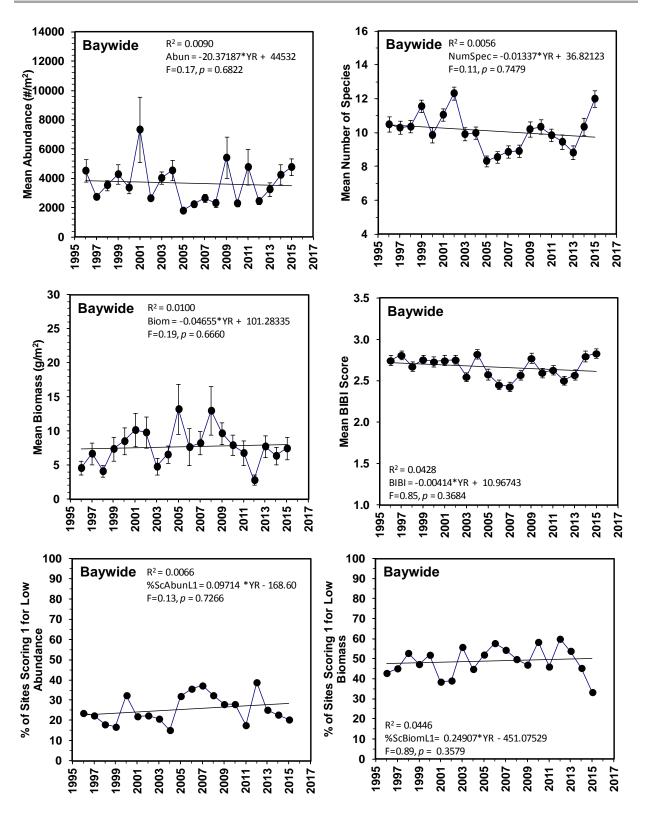


Figure 3-38. Trends in abundance, biomass, number of species, B-IBI (mean \pm 1 SE), and percent sites scoring "1" for low abundance or low biomass in Chesapeake Bay, 1996-2015 (N = 250 sites per year)

3.3 BASIN-LEVEL BOTTOM COMMUNITY CONDITION

Probability-based sampling can be used to produce areal estimates of degradation for regions of interest. The 2015 random sites were post-stratified into 15 reporting regions used by the Chesapeake Bay Program to assess the health of the Bay's ecosystem (Figure 3-39). The Bay Program conducts an annual integrated assessment for the Bay and its tidal tributaries using indicators of water quality conditions (chlorophyll *a*, dissolved oxygen, water clarity, total nitrogen, total phosphorus), living resources (plankton and benthos), and habitat (bay grasses) combined into a Bay Health Index (BHI, Williams et al. 2009). The BHI is a spatially explicit management tool that was developed to evaluate the status of water quality, habitat, and biotic condition in Chesapeake Bay. This information is linked to nutrient and sediment pollution sources and is intended to assist in setting restoration goals at the level of Tributary Basins.

Probability-based estimates for each region followed the methods described in Section 2.4.3 for single Benthic Monitoring Program strata (formulae 1 and 2), except for regions that overlapped strata (Maryland Upper Eastern Shore, Choptank River, Maryland Lower Eastern Shore, and Mid Bay regions). Regions that overlapped benthic program strata were partitioned into the portions corresponding to each stratum, and the estimates for each portion or sub-region were weighted by area and combined into region-wide estimates, as described in Section 2.4.3 (formulae 3 and 4). For example, the Choptank River reporting region consisted of two sub-regions: the Choptank River proper (Bay Program segments CHOTF, CHOOH, and CHOMH2) and the open waters of the Choptank and Little Choptank Rivers (Bay Program segments CHOMH1 and LCHMH). While the former sub-region is part of the Maryland Eastern Tributaries stratum, the latter is part of the Maryland Mid Bay Mainstem stratum. Thus, degradation estimates were produced for each of the Choptank River sub-regions, weighted by the proportion of area represented by each sub-region, and combined.

At the BHI reporting region level, percent area degraded in 2015 decreased in all regions except in the Potomac River, Maryland Upper Western Shore, and Lower Bay (Table 3-7). The decrease was substantial, between 5 and 83 (mean = 22.4) percentage points relative to 2014. The largest decrease in percent area degraded occurred in the Choptank River, from 83% failing in 2014 to 0% failing in 2015. Note that the uncertainty associated with the estimates is generally large because of small sample size or poor data coverage in some of the sub-regions. Thus, at the BHI reporting region level, large changes in benthic condition are likely to occur from year to year, and this should be taken in consideration when comparing regions and years.

Table 3-7.	. Estimated tidal area failing to meet the Chesapeake Bay benthic community restoration goals in 2015 by Bay Health Index (BHI) Reporting Region and Tributary Basin. The Elizabeth River Biological Monitoring Program was not conducted in 2015. See Figure 3-39 for reporting regions. *Northeast River							
	and Eastern Bay are not included in regional estimates because of insufficient data.							
	Region/Basin Percent Failing Km² Failing SE N							
Determen D	luor.	80	1 0 2 0	0 0	25			

Region/Basin	Percent Failing	Km ² Failing	SE	N
Potomac River	80	1,020	8.2	25
Mid Bay	62	1,488	7.4	14
Maryland Lower Western Shore	58	59	14.9	12
York River	56	105	10.1	25
James River	52	334	10.7	23
Patapsco/Back Rivers	50	55	22.4	6
Rappahannock River	48	179	10.2	25
Patuxent River	48	61	10.2	25
Maryland Upper Western Shore	43	38	20.2	7
Maryland Upper Eastern Shore*	33	75	14.2	12
Upper Bay	28	221	9.2	25
Maryland Lower Eastern Shore	20	300	8.0	24
Lower Bay	16	491	8.6	19
Choptank River	0	0	0	6
Elizabeth River	0	0	0	2

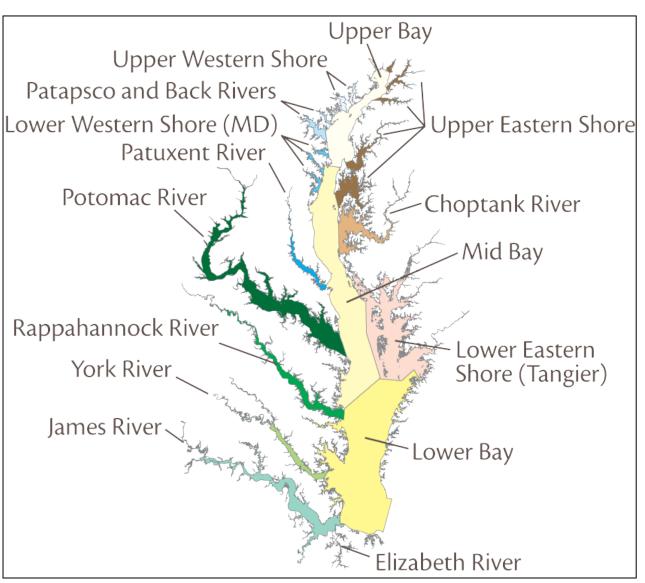


Figure 3-39. Bay Health Index Reporting Regions and Tributary Basins. Source: *EcoCheck*, University of Maryland Center for Environmental Science (UMCES)

4.0 **DISCUSSION**

The highlights for 2015 can be summarized as follows:

(1) The overall condition of Chesapeake Bay improved in 2015, with 62% of the Bay's tidal waters meeting the benthic community restoration goals (38% failing), up from 59% in 2014. The extent of both the degraded and the severely degraded condition was the lowest since baywide monitoring began in 1996.

(2) The largest improvement occurred in the Maryland portion of the Chesapeake Bay, with 47% of its tidal waters meeting the benthic community restoration goals (53% failing) in 2015, up from 40% in 2014. A statistically significant increasing trend in percent area degraded over the 1985-2014 time series disappeared with the addition of the 2015 data.

(3) The Patuxent River and the Maryland Mainstem showed the largest improvements in Maryland. Between 2014 and 2015, percent area degraded declined from 72% to 48% in the Patuxent River, and from 65% to 53% in the mainstem. In the Patuxent River part of the improvement may have been due to the random sampling of a higher proportion of sandier sites in 2015 compared to other years. The Potomac River was in poorest condition, with 80% of its tidal area failing the restoration goals.

(4) A majority of the fixed sites showed increases in abundance, number of species, biomass, and B-IBI scores in 2015. Benthic condition (B-IBI scores averaged over the last 3 years of monitoring) improved at 10 sites, with 5 sites that were failing the B-IBI now meeting the goals. Benthic condition category did not decline at any of the fixed sites.

(5) Statistically significant B-IBI trends were detected at 12 of the 27 fixed sites, with 4 sites exhibiting improvements in benthic community condition and 8 sites exhibiting declines. Changes in 2015 from 2014 results included the disappearance of degrading trends in the mid-bay mainstem at Calvert Cliffs (Station 001) and Potomac River at St. Clements Island (Station 052), and the appearance of an improving trend in Bear Creek (Station 201).

The observed improvements in benthic condition were associated with low hypoxic volumes in Chesapeake Bay in 2015. Hypoxic volume was below average in June, July, and late August. In early June hypoxic volume was below 2 km³, compared to a long-term average of 4.3 km³. Low hypoxic volumes in 2015 were likely the result of overall low spring flows and nutrient runoff into Chesapeake Bay. Flow from the Susquehanna River in February and March was well below the normal range of streamflow. In April flow increased and peaked above the long-term average, but the variability (day to day fluctuations) and magnitude of Susquehanna spring flow were moderate in 2015 compared to previous years. Windy conditions over Chesapeake Bay in early June also helped to mix and oxygenate the water column (MD DNR 2015).

Discussion

It is known that wind strength, wind direction, and precipitation modulate hypoxia in Chesapeake Bay (Zhou et al. 2014). Southwesterly winds can increase hypoxia by increasing vertical stratification, and northerly winds along the axis of the Bay can reduce hypoxia by mixing the water column and disrupting the stratified density layer that prevents oxygen from reaching the bottom waters (Scully 2010). Precipitation influences hypoxia by changing river flow and nutrient runoff. High spring flows following periods of heavy precipitation bring high delivery of sediments, nutrients, and organic matter into Chesapeake Bay, and increase spatial and temporal stratification within the Bay, factors that intensify hypoxia (Tuttle et al. 1987, Kemp et al. 2005). The intensity of the spring flow appears to be closely associated with benthic condition (Llansó et al. 2011). Particularly, pulses in spring flow following severe rain events have been correlated with extent of degraded benthic condition in Chesapeake Bay (Llansó et al. 2011). Benthic condition varies from year to year depending on a variety of factors, among which nutrient loading, variability in spring river flow, physical forcing, and the timing of hypoxia play contributing and interacting roles.

The timing of hypoxia is an important factor affecting benthic communities in estuaries. Early hypoxia may interact with recruitment processes and set the conditions for which biological condition is assessed later in the year. In June 2015 hypoxic volume was among the lowest observed in the monitoring record, and may have likely contributed to the exceptionally low benthic community degradation observed this year. In contrast, hypoxia occurred very early in 2012, with hypoxic waters in the Bay mainstem observed as early as April 6 and hypoxic volumes in June significantly larger than in 2015. Early hypoxia in 2012 developed in conjunction with large amounts of organic matter delivered by Tropical Storm Lee the previous year, and higher than normal winter and spring water temperatures (Llansó et al. 2013). That year, the extent of degraded benthic condition in the Maryland Bay was one of the highest of the monitoring record. It revealed a close association between benthic condition and early hypoxia. Furthermore, analysis of time series at the fixed sites (Llansó et al. 2011) has revealed a shift in summer hypoxia from mid summer to early summer that started in 1998 and coincided with decreases in abundance and species numbers at many of the mesohaline fixed sites. Murphy et al. (2011) also observed June volumes of hypoxic water in Chesapeake Bay increasing over time. The dynamics of low dissolved oxygen events and the variability observed in benthic condition from one year to the next suggest that benthic communities respond quickly to increasing or decreasing stress. The better oxygen conditions in Chesapeake Bay in 2015 were associated with increases in abundance, number of species, biomass, and mean B-IBI scores that were observed at a majority of the fixed sites and the probability-based sampling strata. Also, at the Bay Health Index reporting regions, increases in percent area meeting the benthic community restoration goals were observed for most regions.

The disappearance of a degrading trend (declining B-IBI) in the mid-bay mainstem at Calvert Cliffs (Station 001) is likely to have been associated with better oxygen conditions in 2015, and probably favorable wind patterns over the Bay. This station is located in shallow water on the western flank of the mid-bay region, adjacent to the mainstem deep

channel and zone of lowest dissolved oxygen in Chesapeake Bay. Seiching of hypoxic water in this region of the Bay has been documented before, and may be correlated with changing wind patterns over the Bay in recent years (Scully 2010). Winter-spring processes and patterns of summertime wind direction play an important role in the dynamics and advection of dissolved oxygen in the mainstem (Lee et al. 2013), and are likely to influence benthic condition in this region of the Bay.

Last year's better benthic condition followed two years of benthic improvements in Chesapeake Bay. In 2013 there were improvements in benthic condition in all of the Maryland strata except the Maryland Eastern Tributaries. The improvements were consistent with good to moderate oxygen conditions in the Chesapeake Bay in 2013. In 2014 significant improvements occurred in the Maryland mainstem and the Virginia mainstem. They coincided with the passing of Hurricane Arthur off the coast of Virginia, sustained northerly winds, and exceptionally low hypoxic volumes in July. The passing of Hurricane Irene over the Chesapeake Region in August 2011 was also accompanied by strong winds, reduced hypoxia, and better overall benthic community condition in Maryland than in the preceding year. Thus physical processes, in addition to spring runoff and nutrient processes, constitute an important factor determining the outcome of benthic condition in any given year.

Despite the improvements observed in recent years, overall benthic condition in Chesapeake Bay and the Maryland Bay remains in poor status. Biomass-dominant species have declined over the last several years, as has the number of species at many of the fixed sites (Llansó et al. 2013, Seitz et al. 2009). Abundance has decreased in the last decade of the monitoring record. Increasing trends in species abundance are not observed except for tubificid oligochaetes, which generally are indicators of eutrophic conditions and low dissolved oxygen content. In 2015, 11 of the fixed sites exhibited significant declining trends in abundance, 12 sites exhibited significant declining trends in biomass, and 13 sites exhibited significant declining trends in numbers of species. Low rates of benthic production are observed in areas impacted by hypoxia (Sturdivant et al. 2014), most dramatically in the Patuxent River and Potomac River (Dauer et al. 2011, Llansó et al. 2012). This background contrasts with recent reports of improving water quality, and suggests that the recovery of the benthic communities, on which many fisheries and avian species depend, may be tied to factors in which not only management plays a role, but increasingly important aspects of climate change (sensu Lee et al. 2013) interact with species populations to provide patterns of benthic community change that clearly mask the restoration efforts. However, the results of this year's monitoring suggest that benthic communities are resilient to stress and can respond quickly to improvements in water quality.

The results presented in this report were enabled by the combination of probabilitybased sampling and fixed point monitoring. Probability-based sampling allows determination of levels of benthic community degradation at multiple spatial scales, from strata and Bay Health Index reporting regions (this report) to tidal creeks (Dauer and Llansó 2003) and Chesapeake Bay Program segments (Llansó et al. 2003). Probability-based data

are also useful for reporting overall condition and identification of impaired waters (305b report) under the Clean Water Act (Llansó et al. 2005, 2009a). These assessments are dependent on fully validated thresholds for assessing benthic community condition at sampling sites. The thresholds were established and validated by Ranasinghe et al. (1994) and updated by Weisberg et al. (1997). The thresholds and the B-IBI and its components allow for a validated, unambiguous approach to characterizing conditions in the Chesapeake Bay. The B-IBI has been shown by Alden et al. (2002) to be sensitive, stable, robust, and statistically sound. Its performance was verified by Llansó et al. (2009b) using data independent of those used in the initial index development effort. This last study revealed good classification performance of the B-IBI, balanced Type I and Type II errors, and the influence of a variety of metrics in the final B-IBI score, characteristics that made assessments in Chesapeake Bay more reliable with the B-IBI than with any of the alternative benthic indicators.

The use of probability-based sampling and fixed point monitoring has allowed us to provide an overall picture of benthic condition in the Chesapeake Bay that contrasts with recent efforts to clean up the bay. This picture would not have emerged if only water quality were monitored, and points to the value of long-term biological monitoring in the face of natural variability and variability from climate change (sensu Lee et al. 2013).

5.0 REFERENCES

- Alden, R.W. III, D.M. Dauer, J.A. Ranasinghe, L.C. Scott, and R.J. Llansó. 2002. Statistical verification of the Chesapeake Bay benthic index of biotic integrity. *Environmetrics* 13:473-498.
- Alden, R.W. III, S.B. Weisberg, J.A. Ranasinghe, and D.M. Dauer. 1997. Optimizing temporal sampling strategies for benthic environmental monitoring programs. *Marine Pollution Bulletin* 34:913-922.
- Baird, D. and R.E. Ulanowicz. 1989. The seasonal dynamics of the Chesapeake Bay Ecosystem. *Ecological Monographs* 59:329-364.
- Boicourt, W.C. 1992. Influences of circulation processes on dissolved oxygen in the Chesapeake Bay. Pages 7-59. *In*: D.E. Smith, M. Leffler, and G. Mackiernan (eds.), Oxygen Dynamics in the Chesapeake Bay: A Synthesis of Recent Results. Maryland Sea Grant Program, College Park, Maryland.
- Boynton, W.R. and W.M. Kemp. 2000. Influence of river flow and nutrient loads on selected ecosystem processes: A synthesis of Chesapeake Bay data. Pages 269-298. *In*: J.E. Hobbie, ed., Estuarine Science: A Synthetic Approach to Research and Practice. Island Press, Washington, D.C.
- Dauer, D.M. 1993. Biological criteria, environmental health and estuarine macrobenthic community structure. *Marine Pollution Bulletin* 26:249-257.
- Dauer, D.M., Lane, M.F., Llansó, R.J. and Diaz, R.J. 2011. Preliminary Evaluations of Secondary Productivity Estimates as Indicators of the Ecological Value of the Benthos to Higher Trophic Levels in Chesapeake Bay. Prepared for Virginia Department of Environmental Quality, Richmond, Virginia by Old Dominion University, Norfolk, Virginia.
- Dauer, D.M. and R.J. Llansó. 2003. Spatial scales and probability based sampling in determining levels of benthic community degradation in the Chesapeake Bay. *Environmental Monitoring and Assessment* 81:175-186.
- Dauer, D.M., A.J. Rodi, Jr., and J.A. Ranasinghe. 1992. Effects of low dissolved oxygen events on the macrobenthos of the lower Chesapeake Bay. *Estuaries* 15:384-391.
- Dennison, W.C., R.J. Orth, K.A. Moore, J.C. Stevenson, V. Carter, S. Kollar, P.W. Bergstrom, and R.A. Batiuk. 1993. Assessing water quality with submersed aquatic vegetation. Habitat requirements as barometers of Chesapeake Bay health. *BioScience* 43:86-94.

- Diaz, R.J. and R. Rosenberg. 1995. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. *Oceanography and Marine Biology Annual Review* 33:245-303.
- Diaz, R.J. and L.C. Schaffner. 1990. The functional role of estuarine benthos. Pages 25-56. *In:* M. Haire and E. C. Chrome, eds., Perspectives on the Chesapeake Bay, Chapter 2. Chesapeake Research Consortium, Gloucester Point, Virginia. CBP/TRS 41/90.
- Flemer, D.A., G.B. Mackiernan, W. Nehlsen, and V.K. Tippie. 1983. Chesapeake Bay: A Profile of Environmental Change. U.S. Environmental Protection Agency, Washington, DC.
- Frithsen, J. 1989. The Benthic Communities within Narragansett Bay. An Assessment for the Narragansett Bay Project by the Marine Ecosystems Research Laboratory, Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island.
- Gray, J.S. 1979. Pollution-induced changes in populations. *Philosophical Transactions of the Royal Society of London* B286:545-561.
- Haas, L.W. 1977. The effect of the spring-neap tidal cycle on the vertical salinity structure of the James, York, and Rappahannock Rivers, Virginia, U.S.A. *Estuarine Coastal and Marine Science* 5:485-496.
- Holland, A.F., N.K. Mountford, M.H. Hiegel, K.R. Kaumeyer, and J.A. Mihursky. 1980. The influence of predation on infaunal abundance in upper Chesapeake Bay. *Marine Biology* 57:221-235.
- Holland, A.F., A.T. Shaughnessy, and M.H. Hiegel. 1987. Long-term variation in mesohaline Chesapeake Bay macrobenthos: Spatial and temporal patterns. *Estuaries* 3:227-245.
- Holland, A.F., A.T. Shaughnessy, L.C. Scott, V.A. Dickens, J. Gerritsen, and J.A. Ranasinghe. 1989. Long-Term Benthic Monitoring and Assessment Program for the Maryland Portion of Chesapeake Bay: Interpretive Report. Prepared for the Maryland Department of Natural Resources by Versar, Inc., Columbia, Maryland. CBRM-LTB/EST-2.
- Holland, A.F., A.T. Shaughnessy, L.C. Scott, V.A. Dickens, J.A. Ranasinghe, and J.K. Summers. 1988. Long-Term Benthic Monitoring and Assessment Program for the Maryland Portion of Chesapeake Bay (July 1986-October 1987). Prepared for Power Plant Research Program, Department of Natural Resources and Maryland Department of the Environment by Versar, Inc., Columbia, Maryland.
- Homer, M. and W.R. Boynton. 1978. Stomach Analysis of Fish Collected in the Calvert Cliffs Region, Chesapeake Bay-1977. Final Report prepared for the Maryland

Power Plant Siting Program by the University of Maryland, Chesapeake Biological Laboratory, Solomons, Maryland. UMCEES 78-154-CBL.

- Homer, M., P.W. Jones, R. Bradford, J.M. Scolville, D. Morck, N. Kaumeyer, L. Hoddaway, and D. Elam. 1980. Demersal Fish Food Habits Studies near Chalk Point Power Plant, Patuxent Estuary, Maryland, 1978-1979. Prepared for the Maryland Department of Natural Resources, Power Plant Siting Program, by the University of Maryland, Center for Environmental and Estuarine Studies, Chesapeake Biological Laboratory, Solomons, Maryland. UMCEES-80-32-CBL.
- Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, G. Brush, J.C. Cornwell, T.R. Fisher, P.M. Glibert, J.D. Hagy, L.W. Harding, E.D. Houde, D.G. Kimmel, W.D. Miller, R.I.E. Newell, M.R. Roman, E.M. Smith, and J.C. Stevenson. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. *Marine Ecology Progress Series* 303:1-29.
- Lee, Y.J., W.R. Boynton, M. Li, and Y. Li. 2013. Role of late winter-spring wind influencing summer hypoxia in Chesapeake Bay. *Estuaries and Coasts* 36:683-696.
- Llansó, R.J. 1992. Effects of hypoxia on estuarine benthos: The lower Rappahannock River (Chesapeake Bay), a case study. *Estuarine, Coastal, and Shelf Science* 35:491-515.
- Llansó, R.J., D.M. Dauer, and J.H. Vølstad. 2009a. Assessing ecological integrity for impaired water decisions in Chesapeake Bay, USA. *Marine Pollution Bulletin* 59:48-53.
- Llansó, R.J., D.M. Dauer, J.H. Vølstad, and L.C. Scott. 2003. Application of the benthic index of biotic integrity to environmental monitoring in Chesapeake Bay. *Environmental Monitoring and Assessment* 81:163-174.
- Llansó, R.J., J. Dew-Baxter, and L.C. Scott. 2011. Chesapeake Bay Water Quality Monitoring Program: Long-Term Benthic Monitoring and Assessment Component, Level 1 Comprehensive Report, July 1984-December 2010. Prepared for the Maryland Department of Natural Resources by Versar, Inc., Columbia, Maryland.
- Llansó, R.J., J. Dew-Baxter, and L.C. Scott. 2012. Chesapeake Bay Water Quality Monitoring Program: Long-Term Benthic Monitoring and Assessment Component, Level 1 Comprehensive Report, July 1984-December 2011. Prepared for the Maryland Department of Natural Resources by Versar, Inc., Columbia, Maryland.
- Llansó, R.J., J. Dew-Baxter, and L.C. Scott. 2013. Chesapeake Bay Water Quality Monitoring Program: Long-Term Benthic Monitoring and Assessment Component, Level 1 Comprehensive Report, July 1984-December 2012.

Prepared for the Maryland Department of Natural Resources by Versar, Inc., Columbia, Maryland.

- Llansó, R.J., J.H. Vølstad, D.M. Dauer, and J.R. Dew. 2009b. Assessing benthic community condition in Chesapeake Bay: Does the use of different benthic indices matter? *Environmental Monitoring and Assessment* 150:119-127.
- Llansó, R.J., J.H. Vølstad, D.M. Dauer, and M.F. Lane. 2005. 2006 303(d) Assessment Methods for Chesapeake Bay Benthos. Prepared for Virginia Department of Environmental Quality by Versar, Inc., Columbia, Maryland, and Department of Biological Sciences, Old Dominion University, Norfolk, Virginia.
- Malone, T.C. 1987. Seasonal oxygen depletion and phytoplankton production in Chesapeake Bay: Preliminary results of 1985-86 field studies. Pages 54-60. *In:* G.B. Mackiernan, ed., Dissolved Oxygen in the Chesapeake Bay: Processes and Effects. Maryland Sea Grant, College Park, Maryland.
- Malone, T.C., L.H. Crocker, S.E. Pile, and B.W. Wendler. 1988. Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary. *Marine Ecology Progress Series* 48:235-249.
- MDNR (Maryland Department of Natural Resources). 2015. Chesapeake Bay Hypoxia Report. Maryland Department of Natural Resources, Tidewater Ecosystem Assessment, Annapolis, Maryland. <u>www.eyesonthebay.net</u>. Posted November 20, 2015.
- Murphy, R.R., W.M. Kemp, and W.P. Ball. 2011. Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. *Estuaries and Coasts* 34:1293-1309.
- NRC (National Research Council). 1990. Managing Troubled Waters: The Role of Marine Environmental Monitoring. National Academy Press, Washington, DC.
- Officer, C.B., R.B. Biggs, J.L. Taft, L.E. Cronin, M.A. Tyler, and W.R. Boynton. 1984. Chesapeake Bay anoxia: Origin, development, and significance. *Science* 223:22-27.
- Pearson, T.H. and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. *Oceanography and Marine Biology Annual Review* 16:229-311.
- Ranasinghe, J.A., L.C. Scott, and S.B. Weisberg. 1993. Chesapeake Bay Water Quality Monitoring Program: Long-Term Benthic Monitoring and Assessment Component, Level 1 Comprehensive Report (July 1984-December 1992). Prepared for Maryland Department of the Environment and Maryland Department of Natural Resources by Versar, Inc., Columbia, Maryland.

- Ranasinghe, J.A., S.B. Weisberg, D.M. Dauer, L.C. Schaffner, R.J. Diaz, and J.B. Frithsen. 1994. Chesapeake Bay Benthic Community Restoration Goals. Prepared for the U.S. Environmental Protection Agency Chesapeake Bay Program Office, the Governor's Council on Chesapeake Bay Research Fund, and the Maryland Department of Natural Resources by Versar, Inc., Columbia, Maryland.
- Ritter, C. and P.A. Montagna. 1999. Seasonal hypoxia and models of benthic response in a Texas Bay. *Estuaries* 22:7-20.
- Scott, L.C., A.F. Holland, A.T. Shaughnessy, V. Dickens, and J.A. Ranasinghe. 1988. Long-Term Benthic Monitoring and Assessment Program for the Maryland Portion of Chesapeake Bay: Data Summary and Progress Report. Prepared for Maryland Department of Natural Resources, Chesapeake Bay Research and Monitoring Division, and Maryland Department of the Environment by Versar, Inc., Columbia, Maryland. PPRP-LTB/EST-88-2.
- Scully, M.E. 2010. The importance of climate variability to wind-driven modulation of hypoxia in Chesapeake Bay. *Journal of Physical Oceanography* 40:1435-1440.
- Seitz, R.D., D.M. Dauer, R.J. Llansó, and W.C. Long. 2009. Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. *Journal of Experimental Marine Biology and Ecology* 381:S4-S12.
- Seliger, H.H., J.A. Boggs, and W.H. Biggley. 1985. Catastrophic anoxia in the Chesapeake Bay in 1984. *Science* 228:70-73.
- Sen, P.K. 1968. Estimates of the regression coefficient based on Kendall's tau. *Journal of the American Statistical Association* 63:1379-1389.
- Sturdivant, S.K., R.J. Diaz, R. Llansó, and D.M. Dauer. 2014. Relationship between hypoxia and macrobenthic production in Chesapeake Bay. *Estuaries and Coasts* 37:1219-1232.
- Tuttle, J.H., R.B. Jonas, and T.C. Malone. 1987. Origin, development and significance of Chesapeake Bay anoxia. Pages 443-472. *In:* S.K. Majumdar, L.W. Hall, Jr., and H.M. Austin, eds., Contaminant Problems and Management of Living Chesapeake Bay Resources. Pennsylvania Academy of Science, Philadelphia, Pennsylvania.
- van Belle, G. and J.P. Hughes. 1984. Nonparametric tests for trend in water quality. *Water Resources Research* 20:127-136.
- Versar, Inc. 1999. Versar Benthic Laboratory Standard Operating Procedures and Quality Control Procedures. Versar, Inc., Columbia, Maryland.
- Virnstein, R.W. 1977. The importance of predation of crabs and fishes on benthic infauna in Chesapeake Bay. *Ecology* 58:1199-1217.

- Warwick, R.M. 1986. A new method for detecting pollution effects on marine macrobenthic communities. *Marine Biology* 92:557-562.
- Weisberg, S.B., J.A. Ranasinghe, D.M. Dauer, L.C. Schaffner, R.J. Diaz, and J.B. Frithsen. 1997. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. *Estuaries* 20:149-158.
- Williams, M., B. Longstaff, C. Buchanan, R. Llansó, and W. Dennison. 2009. Development and evaluation of a spatially-explicit index of Chesapeake Bay health. *Marine Pollution Bulletin* 59:14-25.
- Wilson, J.G. and D.W. Jeffrey. 1994. Benthic biological pollution indices in estuaries. Pages 311-327. *In:* J.M. Kramer, ed., Biomonitoring of Coastal Waters and Estuaries. CRC Press, Boca Raton, Florida.
- Zhou, Y., D. Scavia, and A. M. Michalak. 2014. Nutrient loading and meterological conditions explain interannual variability of hypoxia in Chesapeake Bay. *Limnology and Oceanography* 59:373-384.

APPENDIX A

FIXED SITE COMMUNITY ATTRIBUTE 1985-2015 TREND ANALYSIS RESULTS

Appendix Table A-1. Summer trends in benthic community attributes at mesohaline stations 1985-2015. Shown is the median slope of the trend. Monotonic trends were identified using the van Belle and Hughes (1984) procedure. (a) trends based on 1989-2015 data; (b) trends based on 1995-2015 data; (c) attribute trend based on 1990-2015 data; (d): attributes are used in B-IBI calculations when species specific biomass is unavailable; (e): attribute and trend are not part of the reported B-IBI. Probability values shown in Table 3-2.

Station	B-IBI	Abundance	Biomass	Shannon Diversity	Indicative Abundance	Sensitive Abundance	Indicative Biomass (c)	Sensitive Biomass (c)	Abundance Carnivore/ Omnivores
Potomac River									
43	-0.0000	-50.7692	-0.7505	-0.0034	0.2522	-0.7291(d)	0.0282 (e)	-1.3904	-0.1724 (e)
44	-0.0000	-24.3182	-0.0519	0.0000	-0.2999	-0.4850 (d)	0.0000 (e)	-0.1557	0.5853 (e)
47	0.0000	-48.3333	-0.9133	-0.0035	0.1307	-0.9616 (d)	0.0336 (e)	-1.7240	-0.1694 (e)
51	0.0000	-32.0000	-0.0867	0.0019	-0.6863	0.0608	0.0000 (e)	-0.7300 (e)	0.3358
52	0.0000	-1.3684	-0.0000	-0.0000	0.0000 (d)	0.0000 (d)	0.0000	0.0000	0.0000
					Patuxent River				
71	-0.0256	-38.3014	-0.0248	-0.0280	-0.2408 (d)	-0.0000 (d)	0.2164	0.0000	0.0000
74	0.0000	-2.2917	-0.8838	-0.0021	0.0550	-0.5574 (d)	-0.0005 (e)	-0.1725	-0.2043 (e)
77	-0.0286	2.8947	-0.0461	-0.0009	0.7202	-0.3035 (d)	-0.5747 (e)	0.4869	-0.4723 (e)
					Choptank River				
64	0.0185	-10.3168	0.0723	0.0084	-0.3798 (d)	0.6633 (d)	-0.0048	-0.1300	0.2305
					Maryland Mainste	m			
01	0.0000	-40.0000	-0.0275	-0.0029	-0.2223	-0.0600	0.0000 (e)	-0.0110 (e)	-0.2149
06	0.0000	5.7143	0.0060	-0.0110	-0.0536	-0.3215	0.0125 (e)	-0.6632 (e)	-0.2614
15	0.0000	-5.7143	-0.0213	-0.0050	-0.3915	0.0000	0.2253 (e)	-0.5064 (e)	0.0298
24	0.0000	-14.8429	0.0702	-0.0296	-0.5252(d)	0.4167 (d)	-0.0043	0.2854	0.5035
26	0.0000	8.0704	-0.8483	0.0008	0.0000	-0.4288 (d)	0.0003 (e)	-0.0633	0.1106 (e)
				Marylar	nd Western Shore	Tributaries			
22	-0.0381	-39.6154	-0.0125	-0.0533	1.5524	0.0000 (d)	0.4567 (e)	-0.0000	-0.3030 (e)
23	0.0000	-61.3635	-0.0110	-0.0147	0.1252	0.4933 (d)	0.0000 (e)	0.0000	0.0686 (e)
201(a)	0.0000	0.0000	0.0022	0.0000	0.0000	0.0000 (d)	0.0000 (e)	0.0000	0.0000 (e)
202(a)	-0.0000	-16.2338	-0.0002	0.0000	0.0000	0.0000 (d)	0.0000(e)	0.0000	0.0000 (e)
204(b)	0.0000	-45.4499	-0.0366	0.0009	0.2767 (d)	0.1047 (d)	0.0087	0.1680	-0.2612
				Maryla	nd Eastern Shore 1	ributaries			
62	-0.0421	222.6087	-0.0246	-0.0409	0.0000	-0.4596 (d)	0.0482 (e)	-1.1880	-0.2916 (e)
68	0.0000	22.7386	0.4708	-0.0100	0.1312	0.2286 (d)	0.0005 (e)	0.0228	-0.0820 (e)

Appendix Table A-2. Summer trends in benthic community attributes at oligohaline and tidal freshwater stations 1985-2015. Shown is the median slope of the trend. Monotonic trends were identified using the van Belle and Hughes (1984) procedure. (a): trends based on 1989-2015 data; NA: attribute not calculated. Probability values shown in Table 3-3.

Station	B-IBI	Abundance	Tolerance Score	Freshwater Indicative Abundance	Oligohaline Indicative Abundance	Oligohaline Sensitive Abundance	Tanypodinae to Chironomidae Ratio	Abundance Deep Deposit Feeders	Abundance Carnivore/ Omnivores
					Potomac River				
36	-0.0385	83.3440	0.0207	0.8321	NA	NA	NA	0.5806	NA
40	0.0000	22.5000	-0.0092	NA	0.3069	0.0000	-0.0000	NA	-0.1517
					Patuxent River				
79	0.0000	-5.2778	-0.0049	-0.0251	NA	NA	NA	0.0729	NA
					Choptank River				
66	0.0000	16.9565	0.0755	NA	0.5691	0.0000	0.0000	NA	-0.1629
				Marylan	d Western Shore	Fributaries			
203(a)	0.0556	9.0614	-0.0036	NA	0.0000	0.0000	0.0000	NA	1.7172
				Marylar	nd Eastern Shore T	ributaries			
29	0.0000	-20.8050	0.0062	NA	-0.4430	0.1199	0.0000	NA	0.1403

APPENDIX B

FIXED SITE B-IBI VALUES, SUMMER 2015

Appendix	Appendix Table B-1. Fixed site B-IBI values, Summer 2015.							
Station	Sampling Date	Latitude (WGS84 Decimal Degrees)	Longitude (WGS84 Decimal Degrees)	Mean B-IBI	Status			
001	9/29/2015	38.41905	-76.41851667	3.67	Meets Goal			
006	9/29/2015	38.4419	-76.44425	3.56	Meets Goal			
015	9/29/2015	38.71501667	-76.5137	2.67	Marginal			
022	9/21/2015	39.25798333	-76.59513333	1.67	Severely Degraded			
023	9/21/2015	39.20811667	-76.52353333	2.87	Marginal			
024	8/20/2015	39.12191667	-76.35568333	3.78	Meets Goal			
026	9/8/2015	39.27165	-76.28988333	2.73	Marginal			
029	8/24/2015	39.47948	-75.94501167	2.67	Marginal			
036	9/1/2015	38.76985333	-77.03762167	2.67	Marginal			
040	9/3/2015	38.35751167	-77.23048333	2.53	Degraded			
043	9/2/2015	38.384445	-76.988365	3.00	Meets Goal			
044	9/2/2015	38.3855	-76.99564667	3.80	Meets Goal			
047	9/2/2015	38.36369667	-76.983765	3.80	Meets Goal			
051	9/2/2015	38.205375	-76.73855833	2.67	Marginal			
052	8/18/2015	38.19238333	-76.74763333	1.33	Severely Degraded			
062	9/14/2015	38.38395	-75.85	2.73	Marginal			
064	8/27/2015	38.59039833	-76.06926	3.67	Meets Goal			
066	9/14/2015	38.80143333	-75.92176667	2.38	Degraded			
068	8/26/2015	39.132475	-76.07881333	2.60	Degraded			
071	9/23/2015	38.39508333	-76.54881667	1.89	Severely Degraded			
074	9/22/2015	38.54883333	-76.67615	3.53	Meets Goal			
077	9/22/2015	38.60433333	-76.67516667	2.33	Degraded			
079	9/22/2015	38.7504	-76.68925	2.83	Marginal			
201	9/21/2015	39.23408333	-76.49725	2.87	Marginal			
202	9/21/2015	39.21766667	-76.56421667	1.27	Severely Degraded			
203	8/12/2015	39.27491667	-76.4445	3.22	Meets Goal			
204	9/23/2015	39.00678333	-76.50488333	3.78	Meets Goal			

APPENDIX C

RANDOM SITE B-IBI VALUES, SUMMER 2015

Appendix Tal	Appendix Table C-1. Random site B-IBI values, Summer 2015.							
Station	Sampling Date	Latitude (WGS84 Decimal Degrees)	Longitude (WGS84 Decimal Degrees)	B-IBI	Status			
MET-22401	9/16/2015	38.0666	-75.82891667	2.67	Marginal			
MET-22402	9/16/2015	38.0669	-75.84485	3.00	Meets Goal			
MET-22404	9/15/2015	38.11928333	-75.85098333	2.00	Severely Degraded			
MET-22405	9/15/2015	38.12245	-75.89031667	3.67	Meets Goal			
MET-22406	9/15/2015	38.13285	-75.8823	4.67	Meets Goal			
MET-22407	9/15/2015	38.21846667	-75.82815	3.00	Meets Goal			
MET-22408	9/15/2015	38.33178333	-75.88251667	3.40	Meets Goal			
MET-22409	9/14/2015	38.38221667	-75.86283333	4.20	Meets Goal			
MET-22410	9/14/2015	38.38348333	-75.86403333	2.60	Degraded			
MET-22411	9/14/2015	38.38361667	-75.8369	3.00	Meets Goal			
MET-22412	9/14/2015	38.40078333	-75.84755	2.20	Degraded			
MET-22413	8/27/2015	38.60126833	-76.15571333	3.00	Meets Goal			
MET-22414	9/14/2015	38.911	-75.83603333	3.00	Meets Goal			
MET-22415	8/26/2015	38.98674833	-76.23212167	2.20	Degraded			
MET-22416	8/26/2015	38.9987	-76.23652667	1.67	Severely Degraded			
MET-22417	8/26/2015	39.00352	-76.20186167	3.00	Meets Goal			
MET-22418	8/26/2015	39.007035	-76.16632667	3.00	Meets Goal			
MET-22419	8/26/2015	39.03067167	-76.18327333	3.00	Meets Goal			
MET-22420	8/26/2015	39.06365333	-76.08293333	2.20	Degraded			
MET-22421	8/26/2015	39.1588	-76.01617833	2.00	Severely Degraded			
MET-22422	8/26/2015	39.18361833	-76.06046333	3.00	Meets Goal			
MET-22423	8/24/2015	39.37301167	-76.02279333	3.33	Meets Goal			
MET-22424	8/24/2015	39.37480167	-75.97162	3.00	Meets Goal			
MET-22425	8/24/2015	39.47142667	-75.96710333	3.00	Meets Goal			
MET-22426	8/24/2015	39.38315667	-76.02617667	3.33	Meets Goal			
MMS-22501	9/16/2015	37.91791667	-75.85876667	2.00	Severely Degraded			
MMS-22502	9/16/2015	37.93246667	-75.92385	4.67	Meets Goal			
MMS-22503	9/16/2015	38.03155	-75.921	4.67	Meets Goal			
MMS-22504	9/15/2015	38.05268333	-76.050525	3.67	Meets Goal			
MMS-22505	9/16/2015	38.0584	-75.87343333	2.67	Marginal			
MMS-22506	9/15/2015	38.07253333	-75.94803333	4.00	Meets Goal			
MMS-22507	9/15/2015	38.112	-75.98621667	4.00	Meets Goal			
MMS-22508	9/15/2015	38.11803333	-76.06231667	3.33	Meets Goal			
MMS-22509	8/19/2015	38.15695	-76.11648333	3.67	Meets Goal			
MMS-22510	9/15/2015	38.18221667	-75.99746667	4.00	Meets Goal			
MMS-22511	8/19/2015	38.21213333	-76.17603333	3.67	Meets Goal			
MMS-22512	8/19/2015	38.23143333	-76.21973333	4.00	Meets Goal			
MMS-22513	8/19/2015	38.29393333	-76.35275	2.33	Degraded			

	Sampling	Latitude (WGS84	Longitude (WGS84		
Station	Date	Decimal Degrees)	Decimal Degrees)	B-IBI	Status
MMS-22514	9/14/2015	38.31993333	-76.20716667	2.33	Degraded
MMS-22515	8/19/2015	38.33425	-76.36323333	2.00	Severely Degraded
MMS-22516	8/19/2015	38.412	-76.29273333	2.33	Degraded
MMS-22517	8/19/2015	38.50394	-76.49149	1.00	Severely Degraded
MMS-22518	8/19/2015	38.51591667	-76.37986667	4.00	Meets Goal
MMS-22520	8/31/2015	38.539355	-76.49777	1.33	Severely Degraded
MMS-22521	8/27/2015	38.647585	-76.25636667	3.33	Meets Goal
MMS-22522	8/27/2015	38.66088833	-76.23190833	3.33	Meets Goal
MMS-22523	8/27/2015	38.66424333	-76.17358	4.00	Meets Goal
MMS-22524	8/19/2015	38.71133333	-76.4008	1.00	Severely Degraded
MMS-22525	8/19/2015	38.76086667	-76.4083	2.20	Degraded
MMS-22526	8/27/2015	38.676045	-76.25218667	3.00	Meets Goal
MWT-22301	9/23/2015	38.90706667	-76.504	3.00	Meets Goal
MWT-22302	9/23/2015	38.9183	-76.48868333	2.00	Severely Degraded
MWT-22303	9/23/2015	38.92975	-76.52151667	2.67	Marginal
MWT-22304	9/23/2015	38.94908333	-76.57383333	1.40	Severely Degraded
MWT-22305	9/23/2015	38.96346667	-76.5922	1.40	Severely Degraded
MWT-22306	9/23/2015	38.9734	-76.46533333	4.00	Meets Goal
MWT-22307	9/23/2015	39.03278333	-76.53833333	1.67	Severely Degraded
MWT-22308	9/23/2015	39.04335	-76.4206	3.00	Meets Goal
MWT-22309	9/23/2015	39.04681667	-76.5626	1.67	Severely Degraded
MWT-22310	9/23/2015	39.07418333	-76.4534	3.40	Meets Goal
MWT-22311	9/23/2015	39.07728333	-76.45436667	4.20	Meets Goal
MWT-22312	8/28/2015	39.09699833	-76.53200667	1.00	Severely Degraded
MWT-22313	9/8/2015	39.163025	-76.48961	2.60	Degraded
MWT-22314	8/13/2015	39.18943333	-76.46661667	3.00	Meets Goal
MWT-22315	8/13/2015	39.19006667	-76.46745	3.00	Meets Goal
MWT-22316	8/13/2015	39.19371667	-76.45878333	2.60	Degraded
MWT-22317	8/13/2015	39.19525	-76.47765	3.40	Meets Goal
MWT-22318	9/2/2015	39.21116667	-76.5807	1.00	Severely Degraded
MWT-22319	9/9/2015	39.29591667	-76.37946667	2.00	Severely Degraded
MWT-22320	9/9/2015	39.31931667	-76.3776	3.00	Meets Goal
MWT-22321	9/9/2015	39.35993333	-76.33861667	3.00	Meets Goal
MWT-22322	9/9/2015	39.36365	-76.27463333	3.67	Meets Goal
MWT-22323	9/9/2015	39.37336667	-76.33806667	2.33	Degraded
MWT-22324	9/9/2015	39.37595	-76.25263333	2.00	Severely Degraded
MWT-22325	9/9/2015	39.38951667	-76.2577	3.00	Meets Goal
PMR-22101	8/18/2015	37.9417	-76.31855	3.00	Meets Goal

Appendix Table C-1. (Continued)							
Station	Sampling Date	Latitude (WGS84 Decimal Degrees)	Longitude (WGS84 Decimal Degrees)	B-IBI	Status		
PMR-22102	8/18/2015	37.97093333	-76.40716667	3.67	Meets Goal		
PMR-22103	8/18/2015	37.97306667	-76.32956667	1.67	Severely Degraded		
PMR-22104	8/18/2015	37.99763333	-76.35505	1.00	Severely Degraded		
PMR-22105	8/18/2015	38.09466667	-76.53255	2.33	Degraded		
PMR-22106	8/18/2015	38.13866667	-76.44278333	1.00	Severely Degraded		
PMR-22107	8/18/2015	38.15656667	-76.64446667	1.33	Severely Degraded		
PMR-22108	8/18/2015	38.18581667	-76.69316667	2.33	Degraded		
PMR-22109	8/18/2015	38.18811667	-76.70216667	1.00	Severely Degraded		
PMR-22110	8/18/2015	38.20871667	-76.77346667	1.67	Severely Degraded		
PMR-22111	8/18/2015	38.21011667	-76.82701667	2.33	Degraded		
PMR-22112	9/2/2015	38.214835	-76.73117667	2.33	Degraded		
PMR-22113	9/2/2015	38.22761667	-76.72958333	1.40	Severely Degraded		
PMR-22114	8/18/2015	38.22931667	-76.84053333	1.00	Severely Degraded		
PMR-22115	8/18/2015	38.23676667	-76.83341667	1.33	Severely Degraded		
PMR-22116	8/18/2015	38.2509	-76.88256667	1.00	Severely Degraded		
PMR-22117	8/18/2015	38.25628333	-76.8555	2.20	Degraded		
PMR-22118	9/2/2015	38.28011667	-76.82811667	3.00	Meets Goal		
PMR-22119	9/3/2015	38.346795	-77.17340333	2.60	Degraded		
PMR-22120	9/2/2015	38.365195	-77.003725	3.80	Meets Goal		
PMR-22121	9/3/2015	38.380555	-77.15538667	2.60	Degraded		
PMR-22122	9/3/2015	38.42753333	-77.05128	2.60	Degraded		
PMR-22123	9/1/2015	38.49246	-77.27252833	2.67	Marginal		
PMR-22124	9/1/2015	38.563165	-77.25173833	2.33	Degraded		
PMR-22125	9/1/2015	38.70279833	-77.089665	4.00	Meets Goal		
PXR-22201	9/1/2015	38.29706667	-76.4504	4.00	Meets Goal		
PXR-22202	9/23/2015	38.30136667	-76.46423333	2.67	Marginal		
PXR-22203	9/23/2015	38.30861667	-76.42966667	2.33	Degraded		
PXR-22204	9/23/2015	38.31106667	-76.46865	1.67	Severely Degraded		
PXR-22205	9/23/2015	38.32298333	-76.49206667	2.33	Degraded		
PXR-22206	9/23/2015	38.32325	-76.45526667	3.33	Meets Goal		
PXR-22207	9/23/2015	38.36526667	-76.49075	2.00	Severely Degraded		
PXR-22208	9/23/2015	38.40228333	-76.51861667	3.67	Meets Goal		
PXR-22209	9/23/2015	38.40353333	-76.54825	2.33	Degraded		
PXR-22210	9/23/2015	38.40921667	-76.57018333	3.33	Meets Goal		
PXR-22211	9/23/2015	38.41103333	-76.58688333	1.67	Severely Degraded		
PXR-22212	9/23/2015	38.42696667	-76.61375	1.00	Severely Degraded		
PXR-22213	9/22/2015	38.44218333	-76.63911667	3.00	Meets Goal		
PXR-22215	9/22/2015	38.4539	-76.6489	4.00	Meets Goal		

Appendix Tal	Appendix Table C-1. (Continued)							
Station	Sampling Date	Latitude (WGS84 Decimal Degrees)	Longitude (WGS84 Decimal Degrees)	B-IBI	Status			
PXR-22216	9/22/2015	38.4566	-76.65343333	4.00	Meets Goal			
PXR-22217	9/22/2015	38.47556667	-76.6465	3.00	Meets Goal			
PXR-22220	9/22/2015	38.53138333	-76.6781	3.40	Meets Goal			
PXR-22221	9/22/2015	38.53156667	-76.67391667	4.20	Meets Goal			
PXR-22222	9/22/2015	38.56071667	-76.67786667	3.80	Meets Goal			
PXR-22223	9/22/2015	38.71055	-76.70265	1.80	Severely Degraded			
PXR-22224	9/22/2015	38.73808333	-76.68448333	2.00	Severely Degraded			
PXR-22225	9/22/2015	38.742	-76.68471667	2.33	Degraded			
PXR-22226	9/22/2015	38.44735	-76.60448333	4.33	Meets Goal			
PXR-22227	9/23/2015	38.35371667	-76.48306667	1.67	Severely Degraded			
PXR-22228	9/23/2015	38.3192	-76.4512	3.33	Meets Goal			
UPB-22601	8/20/2015	39.04881667	-76.37773333	1.33	Severely Degraded			
UPB-22602	8/20/2015	39.06315	-76.34423333	2.60	Degraded			
UPB-22603	8/20/2015	39.068	-76.3685	1.00	Severely Degraded			
UPB-22604	8/20/2015	39.10471667	-76.34411667	4.20	Meets Goal			
UPB-22605	9/8/2015	39.11801667	-76.41223167	3.00	Meets Goal			
UPB-22606	9/8/2015	39.13262833	-76.27731167	3.80	Meets Goal			
UPB-22607	8/20/2015	39.13855	-76.34338333	3.00	Meets Goal			
UPB-22608	9/8/2015	39.15406667	-76.40601667	3.80	Meets Goal			
UPB-22609	9/8/2015	39.186	-76.41291667	4.20	Meets Goal			
UPB-22611	8/20/2015	39.2121	-76.27005	3.80	Meets Goal			
UPB-22612	9/8/2015	39.23186167	-76.30510333	3.00	Meets Goal			
UPB-22613	9/9/2015	39.28685	-76.20291667	2.20	Degraded			
UPB-22615	9/9/2015	39.29598333	-76.24735	3.00	Meets Goal			
UPB-22616	9/9/2015	39.3161	-76.22166667	3.40	Meets Goal			
UPB-22617	8/24/2015	39.380275	-76.13026833	3.33	Meets Goal			
UPB-22619	8/24/2015	39.428275	-76.030305	3.00	Meets Goal			
UPB-22620	9/9/2015	39.43451667	-76.07721667	3.00	Meets Goal			
UPB-22621	8/24/2015	39.44235667	-76.02642833	3.00	Meets Goal			
UPB-22622	8/24/2015	39.48010167	-76.075455	3.50	Meets Goal			
UPB-22623	8/24/2015	39.48798333	-76.00471167	2.00	Severely Degraded			
UPB-22624	8/24/2015	39.489595	-76.09713667	4.00	Meets Goal			
UPB-22626	8/24/2015	39.39775333	-76.05305167	2.67	Marginal			
UPB-22627	9/8/2015	39.24743333	-76.27666667	3.00	Meets Goal			
UPB-22628	8/20/2015	39.10513333	-76.27651667	3.40	Meets Goal			
UPB-22629	9/9/2015	39.42895	-76.09445	2.67	Marginal			